นิยามศัพท์ทางฟิสิกส์ เช่น ปริมาณทางฟิสิกส์ และหน่วยในการวัดปริมาณ
การรวมเว็คเตอร์ เชิงเส้น และ เว็คเตอร์ที่ทำมุมกัน
การเคลื่อนที่เชิงเส้นหรือในแนวตรง
การเคลื่อนที่ด้วยความเร็วคงที่
การเคลื่อนที่ด้วยความเร่งคงที่
สมการการเคลื่อนที่ในแนวตรง
1: v = u + at
2: s = (u + v)/2 . t
3: s = ut + 1/2a t^2
4: v^2 = u^2 + 2as
เมื่อ v เป็น ความเร็วปลาย u เป็นความเร็วเริ่มต้น a คือความเร่ง และ t เป็นเวลาที่ใช้จากความเร็วต้นมาเป็นความเร็วปลาย
กฏการเคลื่อนที่ของนิวตัน
กฏข้อที่ 1 วัตถุที่นิ่ง หรือ เคลื่อนที่ด้วยความเร็วคงที่ ก็จะนิ่งและเคลื่อนที่ด้วยความเร็วคงที่ต่อไป ตามเท่าที่ไม่มีแรงลัพธ์จากภายนอกมากระทำ
กฏข้อที่ 2 ของนี้วตั้น แรงที่กระทำต่อวัตถุเป็นปฏิภาคตรงกับความเร่งที่เกิดขึ้นและมวลของวัตถุ ขณะเดียวกัน ความเร่งเป็นปฏิภาคกลับกับมวลของวัตถุ กล่าวคือ แรงเท่ากับผลคูณของมวล F = ma
กฏข้อที่ 3 ทุกแรงกิริยาที่กระทำต่อวัตถุหนึ่งกระทำต่อวัตถุที่สอง แล้วจะมีแรงปฏิกิริยาจากวัตถุที่สองกระทำต่อวัตถุที่หนึ่งด้วยขนาดของแรงเท่ากันแต่ทิศทางตรงกันข้ามกัน
ตัวอย่าง 1 วัตถุหนึ่งมีมวล 20 kg วางนิ่งอยู่บนพื้นลื่น ต่อมามีแรงกระทำทำให้วัตถุมีความเร็ว 24 m/s ภายในเวลา 8 วินาที จงหาขนาดของแรงที่กระทำ
หลักคิด แรงเป็นไปตามกฏข้อที่ 2 ของนิวตัน รู้ค่ามวล แต่ยังไม่รู้ ความเร่ง สามารถหาความเร่งจากสมการการเคลื่อนที่ v = u + at ที่ไม่ทราบค่าคือ a นำไปหาค่าแรงได้
ตัวอย่าง 2 วัตถุมวล 5 kg ตกจากดาษฟ้าตึกสูง 100 m อย่างอิสระ จงหาขนาดของแรงที่กระทำต่อวัตถุ
หลักคิด ดูว่าวัตถุมีแรง ภายนอกใดมากระทำวัตถุบ้าง มีเพียงอย่างเดียวคือแรงความโน้มถ่วง หรือแรงดึงดูดของโลก หรือแรงดึงดูดระหว่างมวล ที่ต่างก็ดึงดูดกันและกันเป็นแรงต่างร่วม ซึ่งได้แก่น้ำหนักของวัตถุนั่นเอง
ตัวอย่างที่ 3 วัตถุหนึ่งถูกแรง 200 N กระทำแล้วทำให้เกิดความเร่ง 10 m/s^2 ถ้าวัตถุก้อนนี้ถูกแรง 100 นิวตัน กระทำจะเกิดความเร่งเท่าใด
หลักคิด โจทย์กำหนดแรงและความเร่งจึงหามวลของวัตถุได้ ตามกฏข้อที่ 2 เมื่อทราบค่ามวลก็สามารถหาความเร่ง เมื่อออกแรง 100 N ได้
ตัวอย่างที่ 4 ออกแรงผลักกล่องมวล 10 kg ตามแนวระดับเคลื่อนไถลไปตามพื้นราบกล่องเริ่งเคลื่อนที่ต้องใช้แรง 70 N หลังจากนั้นกล่องเคลื่อนที่ด้วยความเร็วคงที่โดยใช้แรงผลักเพียง 40N
ก. ให้หาแรงเสียดทานสถิตย์สูงสุด และสัมประสิทธิ์ความเสียดทานสถิตย์ระหว่างผิวกล่องกับพื้นราบ
ข. แรงเสียดทานจลน์และสัมประสิทธิ์ความเสียดทานจลน์ระหว่างผิวกล่องกับพื้น
หลักคิด การผลักวัตถุที่วางบนพื้นที่มีความเสียดทานให้เริ่มเคลื่อนที่ได้เรียกว่าแรงเสียดทานสถิตย์ แต่เมื่อเคลื่อนที่แล้วจะมีความเสียดทานน้อยลงจึงใช้แรงน้อยลง ทั้งแรงเสียดทานสถิตย์และแรงเสียดทานจลน์หาได้จากความสัมพันธ์ f = ŋN ŋคือสัมประสิทธิ์ความเสียดทาน
การที่วัตถุเคลื่อนได้โดยใช้แรง 70 N แสดงว่า แรงเสียดทานเท่ากับ 70N พอดีเพราะเริ่มเคลื่อน แต่พอเคลื่อนแล้วใช้แรงน้อยลงเป็น 40N เคลื่อนที่ด้วยความเร็วคงที่ แสดงว่ามีแรงเสียดทานคงที่กระทำต่อวัตถุเช่นกัน นั่นคื่อแรงเสียดทานเท่ากับแรงที่ออกคือ 40 N เมื่อรู้ค่าแรงเสียดทานก็นำไปคำนวนหา สัมประสิทธิ์ความเสียดทานได้
ตัวอย่างที่ 5 ลังใบหนึ่งมวล 120 kg ตำลงมาจากรถกระบะพ่อค้า ที่กำลังแล่นด้วยความเร็ว 20 m/s ถ้าลังใบนี้ไถลตามพื้นถนนไปได้ไกล 50 m จึงหยุด จงหาขนาดแรงต้านทานการเคลื่อนที่ของพื้นถนนที่กระทำต่อลัง
หลักคิด เมื่อลังตกจากรถความเร็วเท่ากับรถคือ 20m/s และเคลื่อนไปได้ 50 m แล้วหยุดนิ่ง คำนวนหาความเร่งได้จากสมการการเคลื่อนที่ v^2 = u^2 + 2as แล้วหาแรงกระทำได้จากกฏข้อที่2 F =ma ซึ่งเป็นแรงต้านการเคลื่อนที่นั่นเอง
ตัวอย่างที่ 6 ออกแรง 500 N ทำมุม 30องศา กับแนวระดับ ถึงวัตถุมวล 40 kgซึ่งวางอยู่่บนพื้นมีสัมประสิทธิ์ความเสียดทาน 0.4. ให้เคลื่อนที่ไปในแนวระดับจงหาความเร่งของวัตถุ
หลักคิด วัตถุเคลื่อนที่ในแนวระดับ เฉพาะแรงในแนวระดับมีผลต่อการเคลื่อนที่จึงต้องแตกแรง ให้อยู่ในแนวระดับและแนวตั้งฉาก แรงในแนวดิ่งนำไปคำนวณหาแรงเสียดทาน เมื่อทราบแรงเสียดทาน นำไปหักล้างกับแรงที่ออกให้วัตถุ แล้วคำนวณหาความเร่งได้ โดยใช้กฏข้อที่สอง
แรงลัพธ์ = ma
วันจันทร์ที่ 30 ตุลาคม พ.ศ. 2560
วันอาทิตย์ที่ 1 ตุลาคม พ.ศ. 2560
สรุปการสั่น และ คลื่น
การสั่นเกิดขึ้นเมื่อมีสิ่งรบกวนเกิดขึ้นที่อาจก่อให้เกิดคลืนได้ ส่วนคลื่นจากแหล่งกำเนิดการสั่นใช้ตัวกลางในการเคลื่อนที่ไป นอกจากเป็นคลื่นแม่เหล็กไฟฟ้าที่ไม่ใช้ตัวกลางในการเคลื่อนที่
-`คาบ(period) ของคลื่น เป็นเวลาที่ใช้ในการเคลื่อนที่ของคลื่น 1 คลื่นหรือ หรือเกิดการสั่นที่ครบรอบสมบูรณ์ไปและกลับ
-คลื่นนำพลังงานจากจุดสั่นหรือรบกวนไปยังจุดที่รับคลื่น โดยไม่มีการส่งผ่านตัวกลาง จากจุดหนึ่งไปยังอีกจุดหนึ่ง
-ความถี่ของจำนวนการสั่นในเวลาที่กำหนดคูณด้วยความยาวคลื่น จะได้อัตราเร็วของคลื่น
คลื่นตามขวาง ตัวกลางเคลื่อนที่ตั้งฉากกับทิศทางการเคลื่อนที่ของคลื่น
-คลื่นแม่เหล็กไฟฟ้า เช่นคลื่นแสง คลื่นวิทยุ เป็นคลื่นตามขวางที่ไม่ใช้ตัวกลาง
-คลื่นเสียงเป็นคลื่นตามยาว ขณะที่คลื่นในเส้นเชือกเป็นคลื่นตามขวาง
การสอดแทรก(Interference) เกิดขึ้นเมื่อคลื่นเคลื่อนที่จากแหล่งกำเนิดต่างกันเคลื่อนที่ไปยังจุดเดียวกันที่เวลาเดียวกัน
-การสอดแทรกเสริมกัน ยอดคลื่นและท้องคลื่นเสริมกัน การสอดแทรกที่หักล้างกัน ท้องคลื่นกับยอดคลื่นหักล้างกัน
-คลื่นนิ่ง จำกัดขอบเขตในบริเวณหนึ่งที่ขอบเป็นจุดที่เกิดสอดแทรกหักล้างกัน (มีไม่การเคลื่อนที่ของตัวกลาง) ยังคงอยู่ที่ตำแหน่งเดิม
ปรากฏการณ์ดอฟเปลอร์ การได้รับความถี่เปลี่ยนไปอันเนื่องจากการเคลื่อนที่ของแหล่งกำเนิดเสียงหรือ ผู้สังเกตเคลื่อนที่
เมื่อแหล่งกำเนิดเสียงเคลื่อนที่เร็วกว่าอัตราเร็วของคลื่นในตัวกลางจะเกิดคลื่นช็อค (shock wave or bow wave)ปรากฏอยู่ด้านหลัง
คำถามทบทวน
1. a. การกระการรบกวนกระเพื่อมไปตามเวลาที่ผ่านไปเรียกว่าอะไร
b. การรบกวนกระเพื่อมไปตามเวลาและสเปสซ์เรียกว่าอะไร
2. คาบเวลาของลูกตุ้มนาฬิกาคืออะไร
3. เป็นเรื่องที่ดีอย่างไรที่คาบของลูกตุ้มนาฬิกาเป็นเวลา 1 วินาทีครบรอบไปและกลับ
4.สมมุติว่าลูกตุ้มนาฬิกามีคาบเวลา 1.5 วินาที เป็นลูกตุ้มนาฬิกาแขวนยาวกว่าหรือสั้นกว่าในคำถามที่ 3
5. เคิร์ฟแบบไซน์ (sine)สัมพันธ์กับคลื่นอย่างไร
6. ให้แยกความแตกต่างระหว่างส่วนที่แตกต่างกันของคลื่น ความสูงของคลื่น(amplitude) ยอดคลื่น(crest), ท้องคลื่น(trough) และความยาวคลื่น(wavelength)
7.จงแยกความแตกต่างระหว่างคาบ และ ความถี่ ของการสั่น(vibration) หรือ คลื่น และทั้งสองสัมพันธ์กันอย่างไร
8. ตัวกลางที่คลื่นผ่านเคลื่อนไปด้วยกับคลื่นหรือไม่ ให้เหตุว่าทำไมตอบเช่นนั้นด้วย
9. อัตราเร็วของคลื่นสัมพันธ์กับความถี่และความยาวคลื่นอย่างไร
10.ขณะที่ความถี่เสียงเพิ่มขึ้น ความยาวคลื่นเพิ่มหรือลดลง ให้ยกตัวอย่างประกอบให้ดูด้วย
11. ให้แยกให้เห็นความแตกต่างระหว่างคลื่นตามขวางกับเคลื่อนตามยาว
12. จงแยกให้เห็นความแตกต่างระหว่างการสอดแทรกแบบเสริม และการสอดแทรกแบบหักล้าง
13 การเกิดการสอดแทรกเฉพาะบางชนิดของคลื่นหรือเกิดทุกชนิดของคลื่น
-`คาบ(period) ของคลื่น เป็นเวลาที่ใช้ในการเคลื่อนที่ของคลื่น 1 คลื่นหรือ หรือเกิดการสั่นที่ครบรอบสมบูรณ์ไปและกลับ
-คลื่นนำพลังงานจากจุดสั่นหรือรบกวนไปยังจุดที่รับคลื่น โดยไม่มีการส่งผ่านตัวกลาง จากจุดหนึ่งไปยังอีกจุดหนึ่ง
-ความถี่ของจำนวนการสั่นในเวลาที่กำหนดคูณด้วยความยาวคลื่น จะได้อัตราเร็วของคลื่น
คลื่นตามขวาง ตัวกลางเคลื่อนที่ตั้งฉากกับทิศทางการเคลื่อนที่ของคลื่น
-คลื่นแม่เหล็กไฟฟ้า เช่นคลื่นแสง คลื่นวิทยุ เป็นคลื่นตามขวางที่ไม่ใช้ตัวกลาง
-คลื่นเสียงเป็นคลื่นตามยาว ขณะที่คลื่นในเส้นเชือกเป็นคลื่นตามขวาง
การสอดแทรก(Interference) เกิดขึ้นเมื่อคลื่นเคลื่อนที่จากแหล่งกำเนิดต่างกันเคลื่อนที่ไปยังจุดเดียวกันที่เวลาเดียวกัน
-การสอดแทรกเสริมกัน ยอดคลื่นและท้องคลื่นเสริมกัน การสอดแทรกที่หักล้างกัน ท้องคลื่นกับยอดคลื่นหักล้างกัน
-คลื่นนิ่ง จำกัดขอบเขตในบริเวณหนึ่งที่ขอบเป็นจุดที่เกิดสอดแทรกหักล้างกัน (มีไม่การเคลื่อนที่ของตัวกลาง) ยังคงอยู่ที่ตำแหน่งเดิม
ปรากฏการณ์ดอฟเปลอร์ การได้รับความถี่เปลี่ยนไปอันเนื่องจากการเคลื่อนที่ของแหล่งกำเนิดเสียงหรือ ผู้สังเกตเคลื่อนที่
เมื่อแหล่งกำเนิดเสียงเคลื่อนที่เร็วกว่าอัตราเร็วของคลื่นในตัวกลางจะเกิดคลื่นช็อค (shock wave or bow wave)ปรากฏอยู่ด้านหลัง
คำถามทบทวน
1. a. การกระการรบกวนกระเพื่อมไปตามเวลาที่ผ่านไปเรียกว่าอะไร
b. การรบกวนกระเพื่อมไปตามเวลาและสเปสซ์เรียกว่าอะไร
2. คาบเวลาของลูกตุ้มนาฬิกาคืออะไร
3. เป็นเรื่องที่ดีอย่างไรที่คาบของลูกตุ้มนาฬิกาเป็นเวลา 1 วินาทีครบรอบไปและกลับ
4.สมมุติว่าลูกตุ้มนาฬิกามีคาบเวลา 1.5 วินาที เป็นลูกตุ้มนาฬิกาแขวนยาวกว่าหรือสั้นกว่าในคำถามที่ 3
5. เคิร์ฟแบบไซน์ (sine)สัมพันธ์กับคลื่นอย่างไร
6. ให้แยกความแตกต่างระหว่างส่วนที่แตกต่างกันของคลื่น ความสูงของคลื่น(amplitude) ยอดคลื่น(crest), ท้องคลื่น(trough) และความยาวคลื่น(wavelength)
7.จงแยกความแตกต่างระหว่างคาบ และ ความถี่ ของการสั่น(vibration) หรือ คลื่น และทั้งสองสัมพันธ์กันอย่างไร
8. ตัวกลางที่คลื่นผ่านเคลื่อนไปด้วยกับคลื่นหรือไม่ ให้เหตุว่าทำไมตอบเช่นนั้นด้วย
9. อัตราเร็วของคลื่นสัมพันธ์กับความถี่และความยาวคลื่นอย่างไร
10.ขณะที่ความถี่เสียงเพิ่มขึ้น ความยาวคลื่นเพิ่มหรือลดลง ให้ยกตัวอย่างประกอบให้ดูด้วย
11. ให้แยกให้เห็นความแตกต่างระหว่างคลื่นตามขวางกับเคลื่อนตามยาว
12. จงแยกให้เห็นความแตกต่างระหว่างการสอดแทรกแบบเสริม และการสอดแทรกแบบหักล้าง
13 การเกิดการสอดแทรกเฉพาะบางชนิดของคลื่นหรือเกิดทุกชนิดของคลื่น
สรุปบทที่ 8 พลังงานคำถามทบทวน
เมื่อแรงคงที่ทำให้วัตถุเคลื่อนที่ไปในทิศทางของแรง งานที่ทำเท่ากับผลคูณของแรงกับระยะทางที่วัตถุเคลื่อนที่ได้
วัตถุมีพลังงานก็มีความสามารถที่จะทำงาน
พลังงานกล เนื่องมาจากตำแหน่งของบางอย่าง คือพลังงานศักย์ การเคลื่อนที่ของวัตถุบางอย่างคือพลังงานจลน์
ตามกฏการคงตัวของพลังงาน พลังงานไม่สามารถสร้างหรือทำลายให้หายไป พลังงานสามารถเปลี่ยนรูปจากรูปหนึ่งไปเป็นอีกรูปหนึ่ง
-คาน, รอก และพื้นเอียง เป็นเครื่องกลอย่างง่ายที่ช่วยอำนวยความสะดอกและผ่อนแรงในการทำงาน
-ปกติแล้ว งานที่ได้ออกมาเป็นเอ้าพุตที่มีประโยชน์ของเครื่องกลน้อยกว่างานทั้งหมดที่ให้กับเครื่องกลเสมอ
คำถามทบทวน
1. แรงหนึ่งทำให้วัตถุเคลื่อนที่ เมื่อคูณแรงกับเวลาที่ใช้เราเรียกปริมาณนี้ว่าการดล(impulse) ซึงเปลี่ยนแปลงโมเมนตัมของวัตถุนั้น แล้วเราเรียกปริมาณ แรง x ระยะทาง ว่าอะไร และปริมาณอะไรที่ทำให้ค่าปริมาณดังกล่าวเปลี่ยนแปลง
2.ต้องใช้งานในการยกบาเบลล์ จะต้องใช้งานกี่่เท่าในการยกบาร์เบลล์ให้สูงขึ้น 3 เท่า
3.อันไหนต้องใช้งานมากกว่า ยกถึง 10 กิโลกรัมในแนวดิ่งระยะทาง 2 m หรือ ยกถุง 5 kgในแนวดิ่งระยะทาง 4 เมตร
4.ใช้งานกี่จูลที่ทำต่อวัตถุ เมื่อให้แรง 10 N ผลักวัตถุไปเป็นระยะทาง 10 m
5.ใช้กำลังเท่าใด เมื่อทำงาน 100 J ให้วัตถุ ในเวลา 0.5 s และจะมีกำลังเท่าใดถ้าทำงานเดียวกันในเวลา 1 วินาที
6. พลังงานกลคืออะไร
7.a)ถ้าคุณทำงาน 100 J ในการยกถังน้ำ พลังงานศักย์เนื่องจากความโน้มถ่วงคืออะไรที่สัมพันธ์กับตำแหน่งเริ่มต้น
b)พลังงานศักย์ของถังน้ำจะเป็นอย่างไรถ้ายกขึ้นไปสูงเป็นสองเท่า
8.ถ้ายกก้อนหินขึ้นเหนือพื้นจนพลังงานศักย์ของมันเทียบกับพื้นเป็น 200 J แล้วปล่อยลงมา พลังงานจลน์ของก้อนหินจะเป็นเท่าใดก่อนที่จะชนพื้น ?
9. สมมุติว่ารถยนต์มีพลังงานจลน์ 2000 ถ้ารถเคลื่อนด้วยอัตราเร็วเป็นสองเท่าพลังงานจลน์จะมีค่าเท่าใด และ อัตราเร็วเป็นสามเท่า จะมีพลังงานจลน์เท่าใด
10.พลังงานจลน์ของลูกธนูที่ยงจากคันที่ง้างด้วยพลังงานศักย์ 50 J
11.หมายความว่าอย่างไรที่กล่าวว่าในระบบใดๆผลรวมพลังงานยังคงเท่าเดิมเสมอ
12.ในความเข้าใจอย่างไรที่กล่าวว่าพลังงานจากถ่านหินคือพลังงานแสงอาทิตย์
13.ทำไมจึงมีขีดจำกำกัดสูงสุดที่รถยนต์วิ่งไปได้ต่อน้ำมันหนึ่งถัง
14.ในสองทางใดที่เครื่องกลสามารถเปลี่ยนแรงที่ให้เป็นอินพุต
15.ในทางใดที่เครื่องกลต้องเป็นไปตามการคงตัวของพลังงาน เป็นไปได้สำหรับเครื่องกลหนึ่งที่ควบรวมพลังงานหรืองานที่ให้เป็นอินพุต
16.หมายถึงอะไรที่กล่าวว่าเครื่องกลชนิดหนึ่งๆมีการได้เปรียบเชิงกลแน่นอนอย่างหนึ่ง
17. คานพื้นฐาน 3 ชนิดคืออะไร
18. ประสิทธิภาพของเครื่องกลคืออะไร ที่ใช้พลังงานนำเข้า 100 จูลน์ ทำงานที่มีประโยชน์ได้ 35 จูลน์
19. จงแยกให้เห็นระหว่างการได้เปรียบเชิงกลทางทฤษฎีแับการได้เปรียบเชิงกลจริง และจะเปรียบเทียบในเรื่องนี้อย่างไรถ้าเครื่องกลมีประสิทธิภาพ 100%
20. ประสิทธิภาพของร่างกายเป็นเท่าใดเมื่อนักปั่นจักรยานใช้กำลัง 1000 w เพื่อส่งผ่านพลังงานกลไปในการปั่นจักรยานของเขาด้วยอัตรา 100 w
วัตถุมีพลังงานก็มีความสามารถที่จะทำงาน
พลังงานกล เนื่องมาจากตำแหน่งของบางอย่าง คือพลังงานศักย์ การเคลื่อนที่ของวัตถุบางอย่างคือพลังงานจลน์
ตามกฏการคงตัวของพลังงาน พลังงานไม่สามารถสร้างหรือทำลายให้หายไป พลังงานสามารถเปลี่ยนรูปจากรูปหนึ่งไปเป็นอีกรูปหนึ่ง
-คาน, รอก และพื้นเอียง เป็นเครื่องกลอย่างง่ายที่ช่วยอำนวยความสะดอกและผ่อนแรงในการทำงาน
-ปกติแล้ว งานที่ได้ออกมาเป็นเอ้าพุตที่มีประโยชน์ของเครื่องกลน้อยกว่างานทั้งหมดที่ให้กับเครื่องกลเสมอ
คำถามทบทวน
1. แรงหนึ่งทำให้วัตถุเคลื่อนที่ เมื่อคูณแรงกับเวลาที่ใช้เราเรียกปริมาณนี้ว่าการดล(impulse) ซึงเปลี่ยนแปลงโมเมนตัมของวัตถุนั้น แล้วเราเรียกปริมาณ แรง x ระยะทาง ว่าอะไร และปริมาณอะไรที่ทำให้ค่าปริมาณดังกล่าวเปลี่ยนแปลง
2.ต้องใช้งานในการยกบาเบลล์ จะต้องใช้งานกี่่เท่าในการยกบาร์เบลล์ให้สูงขึ้น 3 เท่า
3.อันไหนต้องใช้งานมากกว่า ยกถึง 10 กิโลกรัมในแนวดิ่งระยะทาง 2 m หรือ ยกถุง 5 kgในแนวดิ่งระยะทาง 4 เมตร
4.ใช้งานกี่จูลที่ทำต่อวัตถุ เมื่อให้แรง 10 N ผลักวัตถุไปเป็นระยะทาง 10 m
5.ใช้กำลังเท่าใด เมื่อทำงาน 100 J ให้วัตถุ ในเวลา 0.5 s และจะมีกำลังเท่าใดถ้าทำงานเดียวกันในเวลา 1 วินาที
6. พลังงานกลคืออะไร
7.a)ถ้าคุณทำงาน 100 J ในการยกถังน้ำ พลังงานศักย์เนื่องจากความโน้มถ่วงคืออะไรที่สัมพันธ์กับตำแหน่งเริ่มต้น
b)พลังงานศักย์ของถังน้ำจะเป็นอย่างไรถ้ายกขึ้นไปสูงเป็นสองเท่า
8.ถ้ายกก้อนหินขึ้นเหนือพื้นจนพลังงานศักย์ของมันเทียบกับพื้นเป็น 200 J แล้วปล่อยลงมา พลังงานจลน์ของก้อนหินจะเป็นเท่าใดก่อนที่จะชนพื้น ?
9. สมมุติว่ารถยนต์มีพลังงานจลน์ 2000 ถ้ารถเคลื่อนด้วยอัตราเร็วเป็นสองเท่าพลังงานจลน์จะมีค่าเท่าใด และ อัตราเร็วเป็นสามเท่า จะมีพลังงานจลน์เท่าใด
10.พลังงานจลน์ของลูกธนูที่ยงจากคันที่ง้างด้วยพลังงานศักย์ 50 J
11.หมายความว่าอย่างไรที่กล่าวว่าในระบบใดๆผลรวมพลังงานยังคงเท่าเดิมเสมอ
12.ในความเข้าใจอย่างไรที่กล่าวว่าพลังงานจากถ่านหินคือพลังงานแสงอาทิตย์
13.ทำไมจึงมีขีดจำกำกัดสูงสุดที่รถยนต์วิ่งไปได้ต่อน้ำมันหนึ่งถัง
14.ในสองทางใดที่เครื่องกลสามารถเปลี่ยนแรงที่ให้เป็นอินพุต
15.ในทางใดที่เครื่องกลต้องเป็นไปตามการคงตัวของพลังงาน เป็นไปได้สำหรับเครื่องกลหนึ่งที่ควบรวมพลังงานหรืองานที่ให้เป็นอินพุต
16.หมายถึงอะไรที่กล่าวว่าเครื่องกลชนิดหนึ่งๆมีการได้เปรียบเชิงกลแน่นอนอย่างหนึ่ง
17. คานพื้นฐาน 3 ชนิดคืออะไร
18. ประสิทธิภาพของเครื่องกลคืออะไร ที่ใช้พลังงานนำเข้า 100 จูลน์ ทำงานที่มีประโยชน์ได้ 35 จูลน์
19. จงแยกให้เห็นระหว่างการได้เปรียบเชิงกลทางทฤษฎีแับการได้เปรียบเชิงกลจริง และจะเปรียบเทียบในเรื่องนี้อย่างไรถ้าเครื่องกลมีประสิทธิภาพ 100%
20. ประสิทธิภาพของร่างกายเป็นเท่าใดเมื่อนักปั่นจักรยานใช้กำลัง 1000 w เพื่อส่งผ่านพลังงานกลไปในการปั่นจักรยานของเขาด้วยอัตรา 100 w
บทที่ 8 พลังงาน
พลังงานเป็นมโนทัศน์หลักทางวิทยาศาสตร์ทั้งหมด ปัจจุบันพบว่าพลังงานแทรกอยู่ในทุกสาขาของวิทยาศาสตร์ ในเกือบทุกแง่มุมของสังคมมนุษย์ที่เราคุ้นเคยกัน พลังงานมาสู่เราจากแสงอาทิตย์ อยู่ในอาหารที่เรากินให้ชีวิตดำรงอยู่ได้ เป็นมโนทัศน์ที่เราคุ้นเคยมากที่สุดแต่อาจกำหนดยากมากอย่างหนึ่ง บุคคล สถานที่และสิ่งของต่างๆ มีพลังงาน เราสังเกตพลังงานเฉพาะเมื่อมีบางอย่างเกิดขึ้น เฉพาะเมื่อพลังงานถูกเปลี่ยนรูปส่งผ่านไป เริ่มต้นศึกษาพลังงานโดยสังเกตมโนทัศน์ที่สัมพันธ์กัน : งาน
8.1 งาน(work)
ทราบกันแล้วว่าการเปลี่ยนการเคลื่อนที่ของวัตถุเกี่ยวข้องกับทั้งแรงและช่วงเวลาที่ออกแรงนั้น โดยการดล(impulse)วัดโดยผลคูณของแรงกับเวลา ความยาวนานไม่จำเป็นต้องเป็นเวลาเสมอไป เป็นระยะทางได้เช่นกัน โดยพิจารณาผลคูณระหว่างแรงกับระยะทาง ซึ่งเรียกว่างาน (work) เราทำงานเมื่อยกสิ่งของวัตถุ ต้านกับแรงโน้มถ่วงของโลก ยิ่งยกวัตถุที่หนักก็ยิ่งทำงานมาก มีองค์ประกอบสองอย่างที่เข้ามาเกี่ยวข้องเมื่อทำงานแล้วเสร็จ (1) แรงที่ทำ (2) การเคลื่อนไหวบางอย่างโดยแรงนั้น พิจารณาการเคลื่อนที่ด้วยแรงคงที่และการเคลื่อนที่ไปตามแนวเส้นตรงตามทิศทางของแรง แล้วงานเกิดขึ้นกับวัตถุที่ให้แรง คือผลคูณระหว่าง แรง กับ ระยะทางที่วัตถุเคลื่อนที่ เขียนสั้นๆได้คือ
งาน = แรง x ระยะทาง
W = F x d
หน่วยที่ใช้วัดงานเป็นหน่วยของแรงคูณกับหน่วยระยะทาง ได้แก่ นิวตัน.เมตร หรือ จูล(๋Joule) ย่อตัวJ หน่วยที่ใหญ่ขึ้น กิโลจูล(kJ) เมกกะจูล(MJ)เป็นต้น
ยกขวดน้ำหนึ่งขวดขึ้นไปได้ 1 ชั้น และถ้าถือขวดน้ำ 2 ขวด ไปได้ 1 ชั้น เท่ากับทำงาน 2 เท่า เช่นเดียวกัน ถ้าถือขวดน้ำหนึ่งขวดขึ้นไป 2 ชั้นก็เท่ากับทำงานถือขดน้ำ 2 ขวดไปสูง 1 ชั้น ที่เป็นเช่นนี้เพราะงานขึ้นอยู่กับแรงและระยะทางที่ออกแรง
นักยกน้ำหนักที่ยกบาร์เบลไว้เหนือหัวไม่เคลื่อนไปไหนก็ไม่เกิดงานใด ถ้าถ้ายกบาร์เบลจากพื้นขึ้นไปอยู่นำแหน่งเหนือหัวก็เกิดการทำงาน
งานแบ่งออกได้เป็น 2 แบบ แบบเแรกทำงานเพื่อให้เปลี่ยนอัตราเร็ว เช่นรถยนต์เร่งให้มีอัตราเร็วมากขึ้น หรือลดความเร็วของรถลง อีกประเภทหนึ่งทำงานต้านกับแรงอื่น เช่นการง้างคันธนู การยืดยาง
8.2 กำลังงาน (power)
นิยามความหมายของงานไม่ได้กล่าวถึงว่าทำงานเป็นระยะเวลานานเท่าใด ดังนั้นไม่ว่าจะถือของขึ้นไปชั้นบนไม่ว่าจะเดินถือขึ้นช้า หรือเร็ว หรือแม้แต่วิ่งขึ้นไป ก็ทำงานเท่ากัน แต่ถ้าวิ่งขึ้นด้วยเวลา10 วินาที เหนื่อยกว่าการเดินขึ้นด้วยเวลา 1 นาทีแน่นอน ทำไม เพื่อให้เข้าใจถึงเรื่องนี้ จะต้องพิจารณาถึงว่าเราทำงานได้เสร็จเร็วเท่าใด นั่นคือ กำลังงาน (power) กำลังงานคืออัตราการทำงานเสร็จ เท่ากับงานที่ทำหารด้วยเวลาที่ทำงานเสร็จ
กำลังงาน = งานที่ทำ/เวลาที่ทำ
หน่วยที่ใช้วัดกำลังเป็นหน่วยของงานหารด้วยหน่วยของเวลา คือ (นิวตัน.เมตร)/วินาที่ หรือ จูล/วินาที หรือเรียกอีกอย่างว่า วัตต์ (watt) กำลัง 1 watt เท่ากับทำงานหรือใช้งานไป 1 จูลในเวลา 1 วินาที 1 กิโลวัตต์(kW) เท่ากับ 1000 วัตต์ 1 เมกกะวัตต์(MW) เท่ากับ 1 ล้านวัตต์ หน่วยวัดกำลังเครื่องยนต์นิยมใช้วัดกันเป็นกำลังม้า โดยที่ 1 กำลังม้า เท่ากับ 0.75 กิโลวัตต์
8.3 พลังงานกล(mechanical energy)
เมือ่ง้างคันธนูที่มีลูกธนูอยู่ มีบางสิ่งที่สามารถทำงานให้ลูกธนูเคลื่อนออกไป เมื่อไขลานนาฬิกามีบางสิ่งที่ทำให้นาฬิกาเดินต่อไปได้ ยกแท่งน้ำหนักขึ้นไปสำหรับตอกเสาเข็ม มีบางสิ่งที่สามารถทำให้แท่งน้ำหนักตกลงมาทำงานได้ ในแต่ละกรณี บางสิ่งที่สามารถทำงานได้นั้นเรียกว่าพลังงานนั่นเอง เช่นเดียวกับ งาน พลังงานมีหน่วยวัดเหมือนกับงาน คือจูล พลังงานสามารถมีได้หลายรูปแบบ ที่จะกล่าวถึงต่อไปคือพลังงานกล (mechanical energy) เป็นพลังงานที่เกี่ยวข้องกับตำแหน่ง และการเคลื่อนที่ของวัตถุ อาจกล่าวได้ว่าเป็นพลังงานที่พยายามทำให้วัตถุเคลื่อนที่ หรือเปลี่ยนแปลงการเคลื่อนที่ ประกอบด้่วยพลังงานศักย์(potential energy)และพลังงานจลน์ (kinetic energy)
8.4 พลังงานศักย์
วัตถุอาจเก็บพลังงานไว้ตามความสามารถที่ตำแหน่งนั้นๆ หรือพลังงานที่เก็บไว้ในวัตถุที่พร้อมที่จะแสดงออกมาเรียกว่าพลังงานศักย์ ที่ให้ชื่อเช่นนี้เพราะมีความสามารถหรืออยู่ในภาวะที่มีศักยภาพที่จะทำงานได้ ดังเช่นคันธนูที่ง้างไว้ ยางที่ยืดไว้ และพลังงานที่เป็นศักยภาพตามตำแหน่งของวัตถุ สารที่สามารถทำงานได้ผ่านทางปฏิกริยาเคมี เช่นอาหารที่เรารับประทาน ซากดึกดำบรรพหรือฟอสซิลที่ให้เป็นเชื้อเพลิงได้ งานที่ต้องทำในการยกวัตถุขึ้นไปที่ระดับต่างๆ ต้านกับแรงโน้มถ่วง เรียกว่าพลังงานศักย์เนื่องจากความโน้มถ่วง
งานที่ทำเท่ากับแรงที่ใช้ในการเคลื่อนวัตถุคูณกับระยะทางในแนวตั้ง จาก งาน W = F.d
แรงที่ยกขึ้นเท่ากับแรงน้ำหนัก mg ของวัตถุดังนั้นงานที่ทำให้การยกวัตถุขึ้นไปสูง h เป็น mgh
นั่นคือพลังงานศักย์เนื่องจากความโน้มถ่วง เท่ากับ น้ำหนักคูณความสูง
PE = mgh
8.5 พลังงานจลน์
เราสามารถทำให้วัตถุเคลื่อนที่ วัตถุก็มีความสามารถจากการเคลื่อนที่ เป็นความสามารถที่จะทำงาน เป็นพลังงานจากการเคลื่อนที่ ที่เรียกว่าพลังงานจลน์ พลังงานจลน์ขึ้นอยู่กับมวล และอัตราเร็ว โดยที่พลังงานจลน์หาได้จาก KE = 1/2 x มวล x อัตราเร็ว หรือ เขียนได้เป็น
KE = 1/2.m.v^2
8.6 การคงตัวของพลังงาน
สิ่งสำคัญมากกว่าการกล่าวว่าพลังงานคืออะไร ได้แก่การเข้าใจว่าพลังงานมีพฤติกรรมอย่างไร .ส่งผ่านแปลงรูปอย่างไร เราสามารถที่จะเข้าใจได้เกือบทุกกระบวนการ หรือเปลี่ยนแปลงที่เกิดขึ้นในธรรมชาติได้ดีกว่าถ้าเราวิเคราะห์ในเทอมของการส่งผ่านพลังงานจากพลังงานรูปหนึ่งไปเป็นอีกรูปหนึ่ง
วิเคราะหารยิงลูกหินด้วยหนังสติก ต้องออกแรงยืดยางของหนังสติกก่อนให้มีพลังงานศักย์ยืดหยุ่น แล้วปล่อยให้ลูกหินเคลื่อนที่มีพลังงานจลน์ด้วยพลังงานศักย์จากยางยืดหนังสติก เมื่อลูกหินไปกระทบเป้าที่ต้องการ แรงที่ไปกระแทกเป้าไม่ได้ตรงกับพลังงานจลน์ที่ลูกหินมี ถ้าศึกษาในรายละเอียดลูกหินและเป้าที่ถูกชนจะมีความร้อนเกิดขึ้น เป็นการส่งผ่านพลังงานที่ไม่มีการสูญหายหรือได้รับเพิ่มลัพธ์เข้ามา การศึกษาเรื่องพลังงานรูปแบบต่างๆ และการส่งผ่านแปลงรูปทำให้ได้ข้อสรุปทางฟิสิกส์ที่เรียกว่า กฏการคงตัวของพลังงาน
8.7 เครื่้องกล
8.8 ประสิทธิภาพ
8.9 พลังงานเพื่อชีวิต
ทุกเซลล์ที่มีชีวิตในสิ่งมีชีวิตเป็นเหมือนเครื่องจักรที่มีชีวิต เหมือนกับเครื่องจักรกลใดๆ ที่จำต้องสร้างพลังงาน สิ่งมีชีวิตทั้งหมดในโลกใบนี้ได้รับอาหารจากสารประกอบไฮโดรคาร์บอนที่ปลดปล่อยให้พลังงานเมื่อทำปฏิกิริยากับออกซิเจน คล้ายคลึงกับเชื้อเพลิงปิโตรเลียมที่ได้อภิปรายมาแล้ว มีพลังงานที่เก็บไว้ในโมเลกุลในสถานะเชื้อเพลิงมากกว่าที่การปฏิกิริยาผลิตพลังงานหลังจากการสันดาปเผาผลาญ ความแตกต่างพลังงานดังกล่าวคือส่วนที่ธำรงชีวิต
หลักการในการสันดาปในกระบวนการย่อยอาหารในร่างกาย และการสันดาปเชื้อเพลิงฟอสซิลในเครื่องจักรกลนั้นเหมือนกัน ข้อแตกต่างหลักคืออัตราซึ่งปฏิกิริยาเกิดขึ้น ในการย่อยอาหาร ในอัตราการย่อยอาหารจะช้ากว่ามาก และพลังงานปลดปล่อยออกมาตามที่ต้องการของร่างกาย คล้ายกับการเผาเชื้อเพลิงฟอสซิล(ซากดึกดำบรรพ) ทันที่ที่เริ่มการเผาผลาญจะคงอยู่ได้ด้วยตัวเอง คาร์บอนจะรวมกับออกซิเจนเกิดเป็นคาร์บอนไอออกไซด์
การทำให้เกิดการย้อนกลับเป็นเรื่องที่ยุ่งยาก เฉพาะพืชสีเขียว และสิ่งมีชีวิตเซลล์เดียวที่สามารถสร้างคาร์บอนไดออกไซด์รวมกับน้ำแล้วก่อให้เกิดสารประกอบไฮโดรคาร์บอนเช่นน้ำตาล กระบวนการนี้คือการสังเคราะห์แสง ที่ต้องการพลังงานนำเข้าเป็นอินพุต ปกติแล้วได้มาจากแสงอาทิตย์ น้ำตาลเป็นอาหารในรูปที่ง่ายที่สุด ชนิดอื่นๆ ทั้งหมด คาร์โบไฮเดรด โปรตีน และไขมัน ก็เป็นสารประกอบสังเคราะห์ของคาร์บอน ไฮโดรเจน และออกซิเจน เป็นเรื่องที่โชคดีเป็นอย่างยิ่งที่พืชสีเขียวสามารถใช้พลังงานจากแสงอาทิตย์ในการสร้างอาหารให้พลังงานเรา และสิ่งมีชีวิตอื่นที่กินอาหาร เพราะเหตุนี้จึงมีชีวิต
8.1 งาน(work)
ทราบกันแล้วว่าการเปลี่ยนการเคลื่อนที่ของวัตถุเกี่ยวข้องกับทั้งแรงและช่วงเวลาที่ออกแรงนั้น โดยการดล(impulse)วัดโดยผลคูณของแรงกับเวลา ความยาวนานไม่จำเป็นต้องเป็นเวลาเสมอไป เป็นระยะทางได้เช่นกัน โดยพิจารณาผลคูณระหว่างแรงกับระยะทาง ซึ่งเรียกว่างาน (work) เราทำงานเมื่อยกสิ่งของวัตถุ ต้านกับแรงโน้มถ่วงของโลก ยิ่งยกวัตถุที่หนักก็ยิ่งทำงานมาก มีองค์ประกอบสองอย่างที่เข้ามาเกี่ยวข้องเมื่อทำงานแล้วเสร็จ (1) แรงที่ทำ (2) การเคลื่อนไหวบางอย่างโดยแรงนั้น พิจารณาการเคลื่อนที่ด้วยแรงคงที่และการเคลื่อนที่ไปตามแนวเส้นตรงตามทิศทางของแรง แล้วงานเกิดขึ้นกับวัตถุที่ให้แรง คือผลคูณระหว่าง แรง กับ ระยะทางที่วัตถุเคลื่อนที่ เขียนสั้นๆได้คือ
งาน = แรง x ระยะทาง
W = F x d
หน่วยที่ใช้วัดงานเป็นหน่วยของแรงคูณกับหน่วยระยะทาง ได้แก่ นิวตัน.เมตร หรือ จูล(๋Joule) ย่อตัวJ หน่วยที่ใหญ่ขึ้น กิโลจูล(kJ) เมกกะจูล(MJ)เป็นต้น
ยกขวดน้ำหนึ่งขวดขึ้นไปได้ 1 ชั้น และถ้าถือขวดน้ำ 2 ขวด ไปได้ 1 ชั้น เท่ากับทำงาน 2 เท่า เช่นเดียวกัน ถ้าถือขวดน้ำหนึ่งขวดขึ้นไป 2 ชั้นก็เท่ากับทำงานถือขดน้ำ 2 ขวดไปสูง 1 ชั้น ที่เป็นเช่นนี้เพราะงานขึ้นอยู่กับแรงและระยะทางที่ออกแรง
นักยกน้ำหนักที่ยกบาร์เบลไว้เหนือหัวไม่เคลื่อนไปไหนก็ไม่เกิดงานใด ถ้าถ้ายกบาร์เบลจากพื้นขึ้นไปอยู่นำแหน่งเหนือหัวก็เกิดการทำงาน
งานแบ่งออกได้เป็น 2 แบบ แบบเแรกทำงานเพื่อให้เปลี่ยนอัตราเร็ว เช่นรถยนต์เร่งให้มีอัตราเร็วมากขึ้น หรือลดความเร็วของรถลง อีกประเภทหนึ่งทำงานต้านกับแรงอื่น เช่นการง้างคันธนู การยืดยาง
8.2 กำลังงาน (power)
นิยามความหมายของงานไม่ได้กล่าวถึงว่าทำงานเป็นระยะเวลานานเท่าใด ดังนั้นไม่ว่าจะถือของขึ้นไปชั้นบนไม่ว่าจะเดินถือขึ้นช้า หรือเร็ว หรือแม้แต่วิ่งขึ้นไป ก็ทำงานเท่ากัน แต่ถ้าวิ่งขึ้นด้วยเวลา10 วินาที เหนื่อยกว่าการเดินขึ้นด้วยเวลา 1 นาทีแน่นอน ทำไม เพื่อให้เข้าใจถึงเรื่องนี้ จะต้องพิจารณาถึงว่าเราทำงานได้เสร็จเร็วเท่าใด นั่นคือ กำลังงาน (power) กำลังงานคืออัตราการทำงานเสร็จ เท่ากับงานที่ทำหารด้วยเวลาที่ทำงานเสร็จ
กำลังงาน = งานที่ทำ/เวลาที่ทำ
หน่วยที่ใช้วัดกำลังเป็นหน่วยของงานหารด้วยหน่วยของเวลา คือ (นิวตัน.เมตร)/วินาที่ หรือ จูล/วินาที หรือเรียกอีกอย่างว่า วัตต์ (watt) กำลัง 1 watt เท่ากับทำงานหรือใช้งานไป 1 จูลในเวลา 1 วินาที 1 กิโลวัตต์(kW) เท่ากับ 1000 วัตต์ 1 เมกกะวัตต์(MW) เท่ากับ 1 ล้านวัตต์ หน่วยวัดกำลังเครื่องยนต์นิยมใช้วัดกันเป็นกำลังม้า โดยที่ 1 กำลังม้า เท่ากับ 0.75 กิโลวัตต์
8.3 พลังงานกล(mechanical energy)
เมือ่ง้างคันธนูที่มีลูกธนูอยู่ มีบางสิ่งที่สามารถทำงานให้ลูกธนูเคลื่อนออกไป เมื่อไขลานนาฬิกามีบางสิ่งที่ทำให้นาฬิกาเดินต่อไปได้ ยกแท่งน้ำหนักขึ้นไปสำหรับตอกเสาเข็ม มีบางสิ่งที่สามารถทำให้แท่งน้ำหนักตกลงมาทำงานได้ ในแต่ละกรณี บางสิ่งที่สามารถทำงานได้นั้นเรียกว่าพลังงานนั่นเอง เช่นเดียวกับ งาน พลังงานมีหน่วยวัดเหมือนกับงาน คือจูล พลังงานสามารถมีได้หลายรูปแบบ ที่จะกล่าวถึงต่อไปคือพลังงานกล (mechanical energy) เป็นพลังงานที่เกี่ยวข้องกับตำแหน่ง และการเคลื่อนที่ของวัตถุ อาจกล่าวได้ว่าเป็นพลังงานที่พยายามทำให้วัตถุเคลื่อนที่ หรือเปลี่ยนแปลงการเคลื่อนที่ ประกอบด้่วยพลังงานศักย์(potential energy)และพลังงานจลน์ (kinetic energy)
8.4 พลังงานศักย์
วัตถุอาจเก็บพลังงานไว้ตามความสามารถที่ตำแหน่งนั้นๆ หรือพลังงานที่เก็บไว้ในวัตถุที่พร้อมที่จะแสดงออกมาเรียกว่าพลังงานศักย์ ที่ให้ชื่อเช่นนี้เพราะมีความสามารถหรืออยู่ในภาวะที่มีศักยภาพที่จะทำงานได้ ดังเช่นคันธนูที่ง้างไว้ ยางที่ยืดไว้ และพลังงานที่เป็นศักยภาพตามตำแหน่งของวัตถุ สารที่สามารถทำงานได้ผ่านทางปฏิกริยาเคมี เช่นอาหารที่เรารับประทาน ซากดึกดำบรรพหรือฟอสซิลที่ให้เป็นเชื้อเพลิงได้ งานที่ต้องทำในการยกวัตถุขึ้นไปที่ระดับต่างๆ ต้านกับแรงโน้มถ่วง เรียกว่าพลังงานศักย์เนื่องจากความโน้มถ่วง
งานที่ทำเท่ากับแรงที่ใช้ในการเคลื่อนวัตถุคูณกับระยะทางในแนวตั้ง จาก งาน W = F.d
แรงที่ยกขึ้นเท่ากับแรงน้ำหนัก mg ของวัตถุดังนั้นงานที่ทำให้การยกวัตถุขึ้นไปสูง h เป็น mgh
นั่นคือพลังงานศักย์เนื่องจากความโน้มถ่วง เท่ากับ น้ำหนักคูณความสูง
PE = mgh
8.5 พลังงานจลน์
เราสามารถทำให้วัตถุเคลื่อนที่ วัตถุก็มีความสามารถจากการเคลื่อนที่ เป็นความสามารถที่จะทำงาน เป็นพลังงานจากการเคลื่อนที่ ที่เรียกว่าพลังงานจลน์ พลังงานจลน์ขึ้นอยู่กับมวล และอัตราเร็ว โดยที่พลังงานจลน์หาได้จาก KE = 1/2 x มวล x อัตราเร็ว หรือ เขียนได้เป็น
KE = 1/2.m.v^2
8.6 การคงตัวของพลังงาน
สิ่งสำคัญมากกว่าการกล่าวว่าพลังงานคืออะไร ได้แก่การเข้าใจว่าพลังงานมีพฤติกรรมอย่างไร .ส่งผ่านแปลงรูปอย่างไร เราสามารถที่จะเข้าใจได้เกือบทุกกระบวนการ หรือเปลี่ยนแปลงที่เกิดขึ้นในธรรมชาติได้ดีกว่าถ้าเราวิเคราะห์ในเทอมของการส่งผ่านพลังงานจากพลังงานรูปหนึ่งไปเป็นอีกรูปหนึ่ง
วิเคราะหารยิงลูกหินด้วยหนังสติก ต้องออกแรงยืดยางของหนังสติกก่อนให้มีพลังงานศักย์ยืดหยุ่น แล้วปล่อยให้ลูกหินเคลื่อนที่มีพลังงานจลน์ด้วยพลังงานศักย์จากยางยืดหนังสติก เมื่อลูกหินไปกระทบเป้าที่ต้องการ แรงที่ไปกระแทกเป้าไม่ได้ตรงกับพลังงานจลน์ที่ลูกหินมี ถ้าศึกษาในรายละเอียดลูกหินและเป้าที่ถูกชนจะมีความร้อนเกิดขึ้น เป็นการส่งผ่านพลังงานที่ไม่มีการสูญหายหรือได้รับเพิ่มลัพธ์เข้ามา การศึกษาเรื่องพลังงานรูปแบบต่างๆ และการส่งผ่านแปลงรูปทำให้ได้ข้อสรุปทางฟิสิกส์ที่เรียกว่า กฏการคงตัวของพลังงาน
8.7 เครื่้องกล
8.8 ประสิทธิภาพ
8.9 พลังงานเพื่อชีวิต
ทุกเซลล์ที่มีชีวิตในสิ่งมีชีวิตเป็นเหมือนเครื่องจักรที่มีชีวิต เหมือนกับเครื่องจักรกลใดๆ ที่จำต้องสร้างพลังงาน สิ่งมีชีวิตทั้งหมดในโลกใบนี้ได้รับอาหารจากสารประกอบไฮโดรคาร์บอนที่ปลดปล่อยให้พลังงานเมื่อทำปฏิกิริยากับออกซิเจน คล้ายคลึงกับเชื้อเพลิงปิโตรเลียมที่ได้อภิปรายมาแล้ว มีพลังงานที่เก็บไว้ในโมเลกุลในสถานะเชื้อเพลิงมากกว่าที่การปฏิกิริยาผลิตพลังงานหลังจากการสันดาปเผาผลาญ ความแตกต่างพลังงานดังกล่าวคือส่วนที่ธำรงชีวิต
หลักการในการสันดาปในกระบวนการย่อยอาหารในร่างกาย และการสันดาปเชื้อเพลิงฟอสซิลในเครื่องจักรกลนั้นเหมือนกัน ข้อแตกต่างหลักคืออัตราซึ่งปฏิกิริยาเกิดขึ้น ในการย่อยอาหาร ในอัตราการย่อยอาหารจะช้ากว่ามาก และพลังงานปลดปล่อยออกมาตามที่ต้องการของร่างกาย คล้ายกับการเผาเชื้อเพลิงฟอสซิล(ซากดึกดำบรรพ) ทันที่ที่เริ่มการเผาผลาญจะคงอยู่ได้ด้วยตัวเอง คาร์บอนจะรวมกับออกซิเจนเกิดเป็นคาร์บอนไอออกไซด์
การทำให้เกิดการย้อนกลับเป็นเรื่องที่ยุ่งยาก เฉพาะพืชสีเขียว และสิ่งมีชีวิตเซลล์เดียวที่สามารถสร้างคาร์บอนไดออกไซด์รวมกับน้ำแล้วก่อให้เกิดสารประกอบไฮโดรคาร์บอนเช่นน้ำตาล กระบวนการนี้คือการสังเคราะห์แสง ที่ต้องการพลังงานนำเข้าเป็นอินพุต ปกติแล้วได้มาจากแสงอาทิตย์ น้ำตาลเป็นอาหารในรูปที่ง่ายที่สุด ชนิดอื่นๆ ทั้งหมด คาร์โบไฮเดรด โปรตีน และไขมัน ก็เป็นสารประกอบสังเคราะห์ของคาร์บอน ไฮโดรเจน และออกซิเจน เป็นเรื่องที่โชคดีเป็นอย่างยิ่งที่พืชสีเขียวสามารถใช้พลังงานจากแสงอาทิตย์ในการสร้างอาหารให้พลังงานเรา และสิ่งมีชีวิตอื่นที่กินอาหาร เพราะเหตุนี้จึงมีชีวิต
วันเสาร์ที่ 30 กันยายน พ.ศ. 2560
สรุปโมเมนตัมและคำถามทบทวน บทที่ 7
สรุปมโนทัศน์
โมเมนตัมของวัตถุหนึ่งๆคือผลคูณระหว่างมวลและความเร็ว
-การเปลี่ยนแปลงในโมเมนตัมขึ้นอยู่กับแรงที่กระทำต่อช่วงเวลาที่แรงกระทำ
-การดลคือแรงคูณด้วยเวลาช่วงที่แรงกระทำ
-การเปลี่ยนแปลงโมเมนตัมเท่ากับการดล
ตามกฏการคงตัวของโมเมนตัม โมเมนตัมคงตัวเมื่อไม่มีแรงจากภายนอกใดหรือแรงลัพธ์ใด มากระทำ
-เมื่อวัตถุชนกันโดยไม่มีแรงจากภายนอกอื่นใดมากระทำ โมเมนตัมคงตัวไม่ว่าการการชนแบบยืดหยุ่นหรือไม่ยืดหยุ่นก็ตาม
โมเมนตัมเป็นปริมาณเวคเตอร์
-โมเมนตัมรวมกันได้ตามกฏของเวคเตอร์
คำถามทบทวน
1. a. อันไหนที่มีมวลมาก .. รถบรรทุกขณะหยุดนิ่ง หรือ สเก็ตบอร์ด
b. อันไหนที่มีโมเมนตัมมากกว่า
2.เมื่อแรงเฉลี่ยของการชนบนวัตถุหนึ่งที่ขยายขอบเขตเวลา เป็นการเพิ่มหรือการลดแรงดล
3.อะไรเป็นความสัมพันธ์ระหว่างแรงดลและโมเมนตัม
4.a.สำหรับแรงคงที่ ถ้าช่วงเวลาการชนเพิ่มสองเท่า การดลเพิ่มขึ้นเท่าใด
b.ผลเปลี่ยนแปลงลัพธ์ในการเพิ่มโมเมนตัม
5.a.ถ้าทั้งแรงที่กระทำบนวัตถุและเวลาการกระทำเป็นสองเท่า แล้วการดลเพิ่มขึ้นเท่าใด
b.แล้วผลลัพธ์เปลี่ยนแปลงในการเพิ่มของโมเมนตัม
6.รถยนต์คันหนึ่ง ทำไมจึงเป็นข้อดีที่ขยายเวลาระหว่างการชนที่เกิดขึ้น
7.ถ้าเวลาการชนขยายขอบเขตเป็น 4 เท่า แรงที่ไปกระทบเปลี่ยนแปลงไปเท่าใด
8.a.ทำไมเป็นข้อดีสำหรับนักมวยหน่วงการถูกต่อย
b.ทำไมเป็นข้อเสียที่จะเคลื่อนเข้าหาหมัดที่ต่อยมา
9.เมื่อเราขว้างลูกบอล คุณรู้ได้ถึงการดลหรือไม่
โมเมนตัมของวัตถุหนึ่งๆคือผลคูณระหว่างมวลและความเร็ว
-การเปลี่ยนแปลงในโมเมนตัมขึ้นอยู่กับแรงที่กระทำต่อช่วงเวลาที่แรงกระทำ
-การดลคือแรงคูณด้วยเวลาช่วงที่แรงกระทำ
-การเปลี่ยนแปลงโมเมนตัมเท่ากับการดล
ตามกฏการคงตัวของโมเมนตัม โมเมนตัมคงตัวเมื่อไม่มีแรงจากภายนอกใดหรือแรงลัพธ์ใด มากระทำ
-เมื่อวัตถุชนกันโดยไม่มีแรงจากภายนอกอื่นใดมากระทำ โมเมนตัมคงตัวไม่ว่าการการชนแบบยืดหยุ่นหรือไม่ยืดหยุ่นก็ตาม
โมเมนตัมเป็นปริมาณเวคเตอร์
-โมเมนตัมรวมกันได้ตามกฏของเวคเตอร์
คำถามทบทวน
1. a. อันไหนที่มีมวลมาก .. รถบรรทุกขณะหยุดนิ่ง หรือ สเก็ตบอร์ด
b. อันไหนที่มีโมเมนตัมมากกว่า
2.เมื่อแรงเฉลี่ยของการชนบนวัตถุหนึ่งที่ขยายขอบเขตเวลา เป็นการเพิ่มหรือการลดแรงดล
3.อะไรเป็นความสัมพันธ์ระหว่างแรงดลและโมเมนตัม
4.a.สำหรับแรงคงที่ ถ้าช่วงเวลาการชนเพิ่มสองเท่า การดลเพิ่มขึ้นเท่าใด
b.ผลเปลี่ยนแปลงลัพธ์ในการเพิ่มโมเมนตัม
5.a.ถ้าทั้งแรงที่กระทำบนวัตถุและเวลาการกระทำเป็นสองเท่า แล้วการดลเพิ่มขึ้นเท่าใด
b.แล้วผลลัพธ์เปลี่ยนแปลงในการเพิ่มของโมเมนตัม
6.รถยนต์คันหนึ่ง ทำไมจึงเป็นข้อดีที่ขยายเวลาระหว่างการชนที่เกิดขึ้น
7.ถ้าเวลาการชนขยายขอบเขตเป็น 4 เท่า แรงที่ไปกระทบเปลี่ยนแปลงไปเท่าใด
8.a.ทำไมเป็นข้อดีสำหรับนักมวยหน่วงการถูกต่อย
b.ทำไมเป็นข้อเสียที่จะเคลื่อนเข้าหาหมัดที่ต่อยมา
9.เมื่อเราขว้างลูกบอล คุณรู้ได้ถึงการดลหรือไม่
บทที่ 7 โมเมนตัม
7.1 โมเมนตัม
ความเฉื่อยของการเคลื่อนที่คือโมเมนตัม เป็นปริมาตรที่บ่งบอกถึงปริมาณการเคลื่อนที่
โดยทั่วไปกำหนดให้ โมเมนตัม = มวล คูณ ความเร็ว โมเมนตัมจึงเป็นปริมาณเวคเตอร์ ถ้าไม่คิดทิศทางใดๆ โมเมนตัม = มวล x อัตราเร็ว หรือ กำหนดได้เป็น P = mv จะเห็นว่าโมเมนตัมจะมากน้อยขึ้นอยู่กับมวล หรือ ความเร็ว หรือทั้งสองอย่างประกอบกัน
คำถาม
จากรูปในกรณีของโรลเลอร์สเก็ตกับรถบรรทุก ที่เคลื่อนที่ด้วยความเร็วเท่ากัน เมื่อไรที่ ต่างก็มีโมเมนตัมเท่ากัน และเมื่อไรโลเลอร์สเก็ตมีโมเมนตัมมากกว่า
7.2 การดล : การเปลี่ยนแปลงโมเมนตัม
ถ้าโมเมนตัมเปลี่ยนแปลง เป็นไปได้ว่าไม่มวล หรือ ความเร็วเปลี่ยนแปลง ส่วนใหญ่แล้วมวลมักจะไม่ค่อยเปลี่ยนแต่ ความเร็วเปลี่ยน ดังเช่นในรถยนต์ตัวการที่ทำให้ความเร็วเปลี่ยนคือแรง จากเครื่องยนต์นั่นเอง และนั่นคือที่มาของการเปลี่ยนโมเมนตัม
บางครั้งเวลาที่ออกแรงมีความสำคัญต่อการเปลี่ยนแปลง เช่นตอนเริ่มสตาร์สรถยนต์ในช่วงระยะเวลาสั้นๆ และการให้แรงต่อเนื่องเป็นเวลานานมีผลต่อการเปลี่ยนแปลงโมเมนตัม จากกฏข้อที่สองของนิวเตัน นั้นแรง เท่ากับมวลคูณด้วยความเร่ง โดยสามารถเขียนให้อยู่ในรูปของอัตราเปลี่ยนความเร็ว ดังนี้
F = ma = mv/t แล้ว จะได้ว่า Ft = mv
แรงคูณด้วยช่วงเวลาเรียกว่าการดล หรือ การดลคือการเปลี่ยนแปลงโมเมนตัม
ความสัมพันธ์ระหว่างการดลกับโมเมนตัมช่วยให้เราวิเคราะห์สถานะการณ์ต่างๆ ที่มีการเปลี่ยนแปลงโมเมนตัม โดยพิจารณาการลด การเพิ่มโมเมนตัมเป็นระยะเวลานาน และการลดโมเมนตันในช่วงเวลาสั้นๆ
การเพิ่มโมเมนตัมโดยการให้แรงต่อเนื่องเป็นระยะเวลานึ่งจึงได้ความเร็วที่กำหนด การขวางบอลให้ได้ไกลต้องง้างไกลให้แรงต่อเนื่องอยู่ระยะหนึ่งเท่าที่ทำได้จึงจะขว้างได้แรงหรือไกล เช่นเดียวกับตีกอล์ฟ ก็ต้องสวิงให้แรงกับลูกกอล์ฟ ให้นานขึ้นจงส่งลูกไปไกล
การลดโมเมนตัมเห็นได้ชัดเมื่อกระโดดจากที่สูงลงมาบนพื้นที่นิ่มกว่าจะไม่เจ็บ เพราะพื้นที่นิ่มกว่าช่วยยืดเวลาลดแรงกระแทกเช่นเดียวกับรถยนต์ชนของแข็ง กับชนสิ่งที่อ่อนตัวกว่า หรือรถยนต์ที่มีถุงลุม ช่วยยืนเวลาการชนให้นานขึ้นลดแรงกระแทกนั่นเอง นั่นคือถ้ายืนเวลาออกไปได้ 100 เท่าก็สามารถลดความรุนแรงลงได้ 100 เท่าเช่นกัน
ส่วนการลดโมเมนตัมลงในช่วงเวลาสั้นๆ นักมวยใช้ลดแรงกระแทกจากหมัดเมื่อยืดเวลาที่แรงมากระแทกได้ เมื่อตกจากที่สูงลดแรงกระแทกโดยการทำกล้ามเนื้อให้ยืดหยุน หรือตกลงในที่ที่ยืดหยุ่น
คำถาม
นักมวยที่ถูกต่อยลดความรุนแรงได้อย่างไร และนักคาราเต้ใช้การดนมาอธิบายการใช้มือหรือเท้าออกแรงทุบให้อิฐหรือแท่งคอนกรีตแตกหักได้ในการแสดง
การคงตัวของโมเมนตัม
จากกฏข้อที่สองของนิวตันหากต้องการให้วัตถุมีความเร่งจะต้องให้แรงกับวัตถุนั้น ถ้าต้องการให้วัตถุเปลี่ยนแปลงโมเมนตัมก็ให้แรงดลกับวัตถุ โมเมนตัมของระบบหนึ่งไม่สามารถเปลี่ยนแปลงนอกจากมีแรงจากภายนอกมากระทำ โมเมนตัมที่มีโดยระบบก่อนที่จะมีการปฏิสัมพันธ์ภายในจะยังคงมืเท่าเดิมหลังจากการปฏิสัมพันธ์ เมื่อโมเมนตัม(หรือปริมาณใดทางฟิสิกส์) ไม่มีการเปลี่ยนแปลงเรากล่าวว่าการคงตัว แนวคิดที่ให้โมเมนตัมคงตัวเมื่อไม่มีแรงจากภายนอกมากระทำ จัดให้เป็นกฏหลักทางกลศาสตร์ที่เรียกว่า กฏคงตัวของโมเมนตัม (law of conservation of momentum)
เมื่อไม่ปรากฏแรงจากภายนอกมากระทำต่อระบบ โมเมนตัมของระบบยังคงไม่เปลี่ยนแปลง และถ้าระบบยังมีการเปลี่ยนแปลงอันเนื่องจากภายใต้แรงภายในระบบ ดังเช่นนิวเคลียสของอะตอม สลายตัวให้รังสีตลอดเวลา การชนกันของรถ การระเบิดของดวงดาว โมเมนตัมของระบบก่อนและหลังเหตุการณ์ไม่มีการเปลี่ยนแปลง
คำถาม
เมื่อ 50 ปีมาแล้วมีคนแย้งว่าจรวจไม่สามารถทำงานอวกาศนอกโลกเพราะไม่มีอากาศ ที่จะผลักดันจรวด แต่จรวจสามารถทำงานได้ดีทั้งๆ ที่ไม่มีอากาศ จะอธิบายเรื่องนี้ได้อย่างไร
คำถาม
1. กฏข้อที่สองของนิวตันกล่าวว่าถ้าไม่มีแรงลัพธ์กระทำต่อระบบ ได้ก่อให้เกิดความเร่งใดที่เป็นไปได้ จะได้ผลว่าไม่มีการเปลี่ยนแปลงโมเมนตัมเกิดขึ้นหรือไม่
2.กฏข้อที่ 3 ของนิวตันกล่าวว่าแรงที่ปืนไรเฟินกระทำต่อกระสุนเท่ากับแรงที่กระสุนกระทำต่อปินในทิศทางตรงกันข้ามกัน แล้วกล่าวได้ว่าแรงดลของปืนที่กระทำต่อกระสุนปืนเท่ากับแรงดลที่กระสุนกระทำต่อปืนหรือไม่
7.5 การชน
กฏคงตัวของโมเมนตัมกับการชน เมื่อไรก็ตามที่วัตถุชนกันเมื่อไม่มีแรงจากภายนอก ผลรวมของโมเมนตัม หรือโมเมนตัมลัพธ์ไม่เปลี่ยนแปลง
โมเมนตัมก่อนการชน = โมเมนตัมหลังการชน
การชนแบบยืดหยุ่น
การชนกันของลูกบิลเลียด ที่ลูกหนึ่งหยุดนิ่ง และลูกที่ถูกชนเคลื่อนด้วยความเร็วเริ่มต้นของลูกที่มาชนจนหยุดนิ่ง จะเห็นว่าโมเมนตัมส่งผ่านจากลูกบิลเลียดลูกหนึงไปยังอีกลูกหนึ่ง ถ้าการชนของวัตถุยืดหดตัวโดยไม่เสียรูปไปหรือก่อให้เกิดความร้อน การชนนั้นเป็นการชนแบบยืดหยุ่น (elastic Colliding) การชนของวัตถุสะท้อนได้อย่างสมบูรณ์ในการชนแบบยืดหยุ่น
อีกตัวอย่างของการชนแบบไม่ยืดหยุ่น โมเมนตัมลัพธ์ของรถก่อนและหลักเท่าเดิม
คำถาม
คำถามต่อไปนี้อ้างถึงการเลื่อนบนลู่อากาศหรือแอร์แทรก ตามรูปที่ 7.11
1. สมมุติว่าตัวเลื่อนทั้งสองมีมวลเท่ากัน เคลื่อนเข้าหากันที่อัตราเร็วเท่ากัน และชี้ให้เห็นถึงการชนแบบยืดหยุ่น ให้อธิบายการเคลื่อนที่หลังการชน
2. สมมุติให้ตัวเลื่อนทั้งสองมีมวลเดียวกัน และติดกาวเหนียวไว้ให้ตัวเลื่อนติดไปด้วยกันหลักจากที่ชนกัน เมื่อเคลื่อนที่เข้าหากันด้วยอัตราเร็วเท่ากัน ให้อธิบายการเคลื่อนที่หลังการชน
3. สมมุติให้ตัวเลื่อนหนึ่งหยุดนิ่งมีมวลมากกว่าตัวเลื่อนที่เคลื่อนที่เข้าหา 3 เท่า เช่นกันที่ตัวเลื่อนติดกาวไว้ ให้อธิบายการเคลื่อนที่หลังการชน
โมเมนตัม เป็นปริมาณเวคเตอร์
ปริมาณเวคเตอร์มีทิศทางเข้ามาเกี่ยวข้อง การรวมโมเมนตัมซึ่งเป็นเวคเตอร์ สามารถใช้เทคนิคการรวมเว็คเตอร์ได้เหมือนกัน บางครั้งรถยนต์ไม่ได้ชนกันตรงๆ เสมอไป อาจชนทำมุมกันมุมใดมุมหนึ่ง การรวมโมเมนตัม การรวมเหมือนกับการรวมเว็คเตอร์
ความเฉื่อยของการเคลื่อนที่คือโมเมนตัม เป็นปริมาตรที่บ่งบอกถึงปริมาณการเคลื่อนที่
โดยทั่วไปกำหนดให้ โมเมนตัม = มวล คูณ ความเร็ว โมเมนตัมจึงเป็นปริมาณเวคเตอร์ ถ้าไม่คิดทิศทางใดๆ โมเมนตัม = มวล x อัตราเร็ว หรือ กำหนดได้เป็น P = mv จะเห็นว่าโมเมนตัมจะมากน้อยขึ้นอยู่กับมวล หรือ ความเร็ว หรือทั้งสองอย่างประกอบกัน
คำถาม
จากรูปในกรณีของโรลเลอร์สเก็ตกับรถบรรทุก ที่เคลื่อนที่ด้วยความเร็วเท่ากัน เมื่อไรที่ ต่างก็มีโมเมนตัมเท่ากัน และเมื่อไรโลเลอร์สเก็ตมีโมเมนตัมมากกว่า
7.2 การดล : การเปลี่ยนแปลงโมเมนตัม
ถ้าโมเมนตัมเปลี่ยนแปลง เป็นไปได้ว่าไม่มวล หรือ ความเร็วเปลี่ยนแปลง ส่วนใหญ่แล้วมวลมักจะไม่ค่อยเปลี่ยนแต่ ความเร็วเปลี่ยน ดังเช่นในรถยนต์ตัวการที่ทำให้ความเร็วเปลี่ยนคือแรง จากเครื่องยนต์นั่นเอง และนั่นคือที่มาของการเปลี่ยนโมเมนตัม
บางครั้งเวลาที่ออกแรงมีความสำคัญต่อการเปลี่ยนแปลง เช่นตอนเริ่มสตาร์สรถยนต์ในช่วงระยะเวลาสั้นๆ และการให้แรงต่อเนื่องเป็นเวลานานมีผลต่อการเปลี่ยนแปลงโมเมนตัม จากกฏข้อที่สองของนิวเตัน นั้นแรง เท่ากับมวลคูณด้วยความเร่ง โดยสามารถเขียนให้อยู่ในรูปของอัตราเปลี่ยนความเร็ว ดังนี้
F = ma = mv/t แล้ว จะได้ว่า Ft = mv
แรงคูณด้วยช่วงเวลาเรียกว่าการดล หรือ การดลคือการเปลี่ยนแปลงโมเมนตัม
ความสัมพันธ์ระหว่างการดลกับโมเมนตัมช่วยให้เราวิเคราะห์สถานะการณ์ต่างๆ ที่มีการเปลี่ยนแปลงโมเมนตัม โดยพิจารณาการลด การเพิ่มโมเมนตัมเป็นระยะเวลานาน และการลดโมเมนตันในช่วงเวลาสั้นๆ
การเพิ่มโมเมนตัมโดยการให้แรงต่อเนื่องเป็นระยะเวลานึ่งจึงได้ความเร็วที่กำหนด การขวางบอลให้ได้ไกลต้องง้างไกลให้แรงต่อเนื่องอยู่ระยะหนึ่งเท่าที่ทำได้จึงจะขว้างได้แรงหรือไกล เช่นเดียวกับตีกอล์ฟ ก็ต้องสวิงให้แรงกับลูกกอล์ฟ ให้นานขึ้นจงส่งลูกไปไกล
การลดโมเมนตัมเห็นได้ชัดเมื่อกระโดดจากที่สูงลงมาบนพื้นที่นิ่มกว่าจะไม่เจ็บ เพราะพื้นที่นิ่มกว่าช่วยยืดเวลาลดแรงกระแทกเช่นเดียวกับรถยนต์ชนของแข็ง กับชนสิ่งที่อ่อนตัวกว่า หรือรถยนต์ที่มีถุงลุม ช่วยยืนเวลาการชนให้นานขึ้นลดแรงกระแทกนั่นเอง นั่นคือถ้ายืนเวลาออกไปได้ 100 เท่าก็สามารถลดความรุนแรงลงได้ 100 เท่าเช่นกัน
ส่วนการลดโมเมนตัมลงในช่วงเวลาสั้นๆ นักมวยใช้ลดแรงกระแทกจากหมัดเมื่อยืดเวลาที่แรงมากระแทกได้ เมื่อตกจากที่สูงลดแรงกระแทกโดยการทำกล้ามเนื้อให้ยืดหยุน หรือตกลงในที่ที่ยืดหยุ่น
คำถาม
นักมวยที่ถูกต่อยลดความรุนแรงได้อย่างไร และนักคาราเต้ใช้การดนมาอธิบายการใช้มือหรือเท้าออกแรงทุบให้อิฐหรือแท่งคอนกรีตแตกหักได้ในการแสดง
การคงตัวของโมเมนตัม
จากกฏข้อที่สองของนิวตันหากต้องการให้วัตถุมีความเร่งจะต้องให้แรงกับวัตถุนั้น ถ้าต้องการให้วัตถุเปลี่ยนแปลงโมเมนตัมก็ให้แรงดลกับวัตถุ โมเมนตัมของระบบหนึ่งไม่สามารถเปลี่ยนแปลงนอกจากมีแรงจากภายนอกมากระทำ โมเมนตัมที่มีโดยระบบก่อนที่จะมีการปฏิสัมพันธ์ภายในจะยังคงมืเท่าเดิมหลังจากการปฏิสัมพันธ์ เมื่อโมเมนตัม(หรือปริมาณใดทางฟิสิกส์) ไม่มีการเปลี่ยนแปลงเรากล่าวว่าการคงตัว แนวคิดที่ให้โมเมนตัมคงตัวเมื่อไม่มีแรงจากภายนอกมากระทำ จัดให้เป็นกฏหลักทางกลศาสตร์ที่เรียกว่า กฏคงตัวของโมเมนตัม (law of conservation of momentum)
เมื่อไม่ปรากฏแรงจากภายนอกมากระทำต่อระบบ โมเมนตัมของระบบยังคงไม่เปลี่ยนแปลง และถ้าระบบยังมีการเปลี่ยนแปลงอันเนื่องจากภายใต้แรงภายในระบบ ดังเช่นนิวเคลียสของอะตอม สลายตัวให้รังสีตลอดเวลา การชนกันของรถ การระเบิดของดวงดาว โมเมนตัมของระบบก่อนและหลังเหตุการณ์ไม่มีการเปลี่ยนแปลง
คำถาม
เมื่อ 50 ปีมาแล้วมีคนแย้งว่าจรวจไม่สามารถทำงานอวกาศนอกโลกเพราะไม่มีอากาศ ที่จะผลักดันจรวด แต่จรวจสามารถทำงานได้ดีทั้งๆ ที่ไม่มีอากาศ จะอธิบายเรื่องนี้ได้อย่างไร
คำถาม
1. กฏข้อที่สองของนิวตันกล่าวว่าถ้าไม่มีแรงลัพธ์กระทำต่อระบบ ได้ก่อให้เกิดความเร่งใดที่เป็นไปได้ จะได้ผลว่าไม่มีการเปลี่ยนแปลงโมเมนตัมเกิดขึ้นหรือไม่
2.กฏข้อที่ 3 ของนิวตันกล่าวว่าแรงที่ปืนไรเฟินกระทำต่อกระสุนเท่ากับแรงที่กระสุนกระทำต่อปินในทิศทางตรงกันข้ามกัน แล้วกล่าวได้ว่าแรงดลของปืนที่กระทำต่อกระสุนปืนเท่ากับแรงดลที่กระสุนกระทำต่อปืนหรือไม่
7.5 การชน
กฏคงตัวของโมเมนตัมกับการชน เมื่อไรก็ตามที่วัตถุชนกันเมื่อไม่มีแรงจากภายนอก ผลรวมของโมเมนตัม หรือโมเมนตัมลัพธ์ไม่เปลี่ยนแปลง
โมเมนตัมก่อนการชน = โมเมนตัมหลังการชน
การชนแบบยืดหยุ่น
การชนกันของลูกบิลเลียด ที่ลูกหนึ่งหยุดนิ่ง และลูกที่ถูกชนเคลื่อนด้วยความเร็วเริ่มต้นของลูกที่มาชนจนหยุดนิ่ง จะเห็นว่าโมเมนตัมส่งผ่านจากลูกบิลเลียดลูกหนึงไปยังอีกลูกหนึ่ง ถ้าการชนของวัตถุยืดหดตัวโดยไม่เสียรูปไปหรือก่อให้เกิดความร้อน การชนนั้นเป็นการชนแบบยืดหยุ่น (elastic Colliding) การชนของวัตถุสะท้อนได้อย่างสมบูรณ์ในการชนแบบยืดหยุ่น
รูปที่7.12 การชนแบบยืดหยุ่น a)บอลสีเข้มชนบอลที่หยุดนิ่ง b)ต่างเคลื่อนเข้าชนกัน c)การชนของบอล ที่เคลื่อนที่ในทิศทางเดียวกัน ในทุกกรณีที่กล่าวมาโมเมนตัมส่งผ่านหรือกระจายไม่มีการสูญเสียหรือได้รับผลังงาน
การชนไม่ยืดหยุ่น
การคงตัวของพลังงานยงคงเป็นจริงแม้ว่าการชนแล้วทำให้วัตถุเสียรูปหรือเกิดความร้อนขึ้น ระหว่างการชกัน ซึ่งเรียกว่าการชนไม่ยืดหยุ่น (inelastic collistions) เมื่อไรที่การชนแล้วยึดติดไปด้วยกันแล้วเป็นการชนแบบไม่ยืดหยุ่น ตัวอย่างการชนกันของตู้รถไฟที่มีมวล m เท่ากัน คันหนึ่งเคลื่อนทีความเร็ว 4 m/s ขณะที่อีกคันหยุดนิ่งอยู่กับที่ เราสามารถทำนายได้ว่าหลังชนกันแล้วรถทั้งสองคันจะเคลื่อนที่ไปด้วยความเร็วเท่าใดหลังการชน จากการคงตัวขอโมเมนตัม
โมเมนตัมลัพธ์ก่อนชน = โมเมนตัมหลังชน
(m x 4 m/s) + (m x 0 m/s) = (2m x ?m/s)
มวลเป็นสองเท่าหลังการชนจะเห็นว่าความเร็วจะลดลงไปครึ่งหนึ่ง โมเมนตัมตอนเริ่มแรกแชร์กับระหว่างตู้รถทั้งสองโดยไม่มีการสูญเสียหรือได้เพิ่ม นั่นคือโมเมนตัมคงตัว
รูปที่ึ7.13 การชนแบบไม่ยืดหยุ่น โมเมนตัมของตู้รถทางซ้ายแชร์กับตู้รถทางขวาอีกตัวอย่างของการชนแบบไม่ยืดหยุ่น โมเมนตัมลัพธ์ของรถก่อนและหลักเท่าเดิม
คำถาม
คำถามต่อไปนี้อ้างถึงการเลื่อนบนลู่อากาศหรือแอร์แทรก ตามรูปที่ 7.11
1. สมมุติว่าตัวเลื่อนทั้งสองมีมวลเท่ากัน เคลื่อนเข้าหากันที่อัตราเร็วเท่ากัน และชี้ให้เห็นถึงการชนแบบยืดหยุ่น ให้อธิบายการเคลื่อนที่หลังการชน
2. สมมุติให้ตัวเลื่อนทั้งสองมีมวลเดียวกัน และติดกาวเหนียวไว้ให้ตัวเลื่อนติดไปด้วยกันหลักจากที่ชนกัน เมื่อเคลื่อนที่เข้าหากันด้วยอัตราเร็วเท่ากัน ให้อธิบายการเคลื่อนที่หลังการชน
3. สมมุติให้ตัวเลื่อนหนึ่งหยุดนิ่งมีมวลมากกว่าตัวเลื่อนที่เคลื่อนที่เข้าหา 3 เท่า เช่นกันที่ตัวเลื่อนติดกาวไว้ ให้อธิบายการเคลื่อนที่หลังการชน
โมเมนตัม เป็นปริมาณเวคเตอร์
ปริมาณเวคเตอร์มีทิศทางเข้ามาเกี่ยวข้อง การรวมโมเมนตัมซึ่งเป็นเวคเตอร์ สามารถใช้เทคนิคการรวมเว็คเตอร์ได้เหมือนกัน บางครั้งรถยนต์ไม่ได้ชนกันตรงๆ เสมอไป อาจชนทำมุมกันมุมใดมุมหนึ่ง การรวมโมเมนตัม การรวมเหมือนกับการรวมเว็คเตอร์
วันอาทิตย์ที่ 24 กันยายน พ.ศ. 2560
บทที่ 6 เวคเตอร์
6.1 ปริมาณ เวคเตอร์และสเกลล่า
เมื่อไรก็ตามที่ใช้ความยาวของลูกศรแทนขนาดของปริมาณ และทิศทางตามหัวลูกศรแทนทิศทางของปริมาณนั้น ลูกศรนี้เรียกว่า เวคเตอร์
ปริมาณบางปริมาณต้องการทั้งขนาดและทิศทางเพื่อให้อธิบายได้สมบูรณ์ เรียกว่าปริมาณเวคเตอร์ ตัวอย่างเช่นแรงหนึ่งๆ มีทั้งทิศทางและขนาด เช่นเดียวกับความเร็ว แรงและความเร็วจึงเป็นปริมาณเวคเตอร์ที่คุ้นเคยกันมากที่สุด แต่ยังมีปริมาณอื่นๆ จะกล่าวถึงในบทต่อไป
6.2 เวคเตอร์แทนแรง
ผู้ชายผลักด้วยแรง 100N และม้าดึงด้วยแรง 200 N เนื่องจากทั้งสองแรงอยู่ในทิศเดียวกัน ได้ผลลัพธ์เป็นแรงดึงเท่ากับผลร่วมขงอแรงผลักดึงในทิศเดียวกัน ถ้ารถบรรทุกของนี้เคลื่อนไปได้ราวกับว่าทั้งสองแรงแทนได้ด้วยแรงลัพธ์แรงเดียว
ต่อมาถ้าม้าผลักไปด้านหลังด้วยแรง 200 N ขณะที่ผู้ชายดึงด้วยแรง 100 N ตามรูป 6.1 ทางขวา แรงทั้งสองกระทำในทิศทางตรงกันข้าม แรงลัพธ์เท่ากับ 200 -100 = 100 N ไปในทิศที่แรงมีค่ามากกว่า
รูปที่ 6.1 แรงลัพธ์จากสองแรงขึ้นอยู่กับทิศทางของแรงและขนาดของแรงด้วย
การรวมเวคเตอร์
พิจารณาแรงที่ใช้ลากเรือบรรทุกวัสดุโดยม้าดังรูป 6.3 ทางซ้าย เมื่อเว็คเตอร์ทำมุมกันและกัน ในเทคนิคทางเรขาคณิตในการรวมเวคเตอร์เพื่อหาขนาดและทิศทางของแรงลัพธ์หรือเว็คเตอร์ลัพธ์
เวคเตอร์ 2 เวคเตอร์ที่นำมาบวกกัน โดยวาดปลายทั้งสองของเวคเตอร์แตะทำมุมกันดังรูปที่6.3 โดยลากเส้นประจากหัวลูกศรเวคเตอร์ของแต่ละเวคเตอร์โดยลากให้ขนานกับเว็คเตอร์เดิมแต่ละเว็คเตอร์ เป็นการฉายเวคเตอร์ไป จะเกิดเป็นรูปสี่เหลี่ยมด้านขนาน(parallelogram) เพราะว่าด้านตรงข้ามกันขนานกันและมีความยาวเท่ากัน ผลลัพธ์ของสองแรงรวมกันคือเส้นทะแยงของสี่เหลี่ยมด้านขนาน
อีกตัวอย่างพิจารณาเครื่องบินเล็กบินไปทางเหนือด้วยความเร็ว 80 km/h ผ่านข้ามบริเวณที่มีลมพัดไปทางตะวันออกด้วยความเร็ว 60 km/h ตามรูป 6.5 แสดงเว็คเตอร์ของความเร็วเครื่องบินและความเร็วลม ถ้ากำหนด 1cm: 20km/h แรงลัพธ์ในแนวทะแยงของสี่เหลี่ยม วัดได้ 5 cm ซึ่งแทนความเร็ว 100 km/h ในทิศตะวันออกเฉียงเหนือ
การที่เวคเตอร์ทำมุมตั้งฉากกัน สามารถหาแรงลัพธ์โดยใช้ทฤษฎีบททางเรขคณิตของปิทากอรัส (pythagorean theorem) กล่าวว่า กำลังสองของด้านตรงข้ามมุมฉาก เท่ากับ ผลบวกของกำลังสองของอีกสองด้านประกอบมุมฉาก จะสังเกตเห็นว่ามี 2 สามเหลี่ยมมุมฉากในสีเหลี่ยมด้านขนาน (ในกรณีนี้เป็นสีเหลี่ยมพื้นผ้า) ตามรูป 6,5 จากแต่ละด้านของสามเหลี่ยมเหล่านี้จะได้
(เวคเตอร์ลัพธ์)^2 = (60 km/h)^2 = (80 km/h)^2
= 3600 (km/h)^2 + 6400 (km/h)^2
= 10000 (km/h)^2
รากทีสองหรือถอดรูท ของ 10000 (km/h)^2 คือ 100 km/h ตามคาดไว้
รูปที่ 6.5 เครื่องบินเล็กลำหนึ่งบินด้วยความเร็ว 80 km/h ข้ามความเร็วลม 60 km/h มีอัตราเร็วลัพธ์เป็น 100 km/h เทียบกับพื้นดิน
ในกรณีเฉพาะที่เป็นเวคเตอร์เท่ากันและตั้งฉากกัน สี่เหลี่ยมด้านขนานจะกลายเป็นสี่เหลี่ยมผืนผ้า เส้นทะแยง สำหรับสี่เหลี่ยมจตุรัสความยาวในแนวทะแยงหรือแรงลัพธ์เป็น 21/2 หรือ 1.414 คูณด้วยความยาวด้านหนึ่งของเว็คเตอร์เสมอ เช่นแรงลัพธ์ของเว็คเตอร์ ที่เขนาด 100 N เท่ากัน กระทำตั้งฉากกัน จะได้แรงลัพธ์ ลัพธ์เท่ากับ 1.414 คูณ 100 เท่ากับ 141.4 N
6.5 สมดุล (Equlibrium)
เพื่อจะให้เข้าใจพิจารณาสถานะการณ์ตามรูป
รูปที่ 6.7 แขวนตัวเองด้วยลวดราวตากผ้าที่แขวนในแนวดิ่งได้ปลอดภัยกว่า ลวดตากผ้าอาจขาดได้หากให้รับน้ำหนักตัวที่ลวดแขวนตามแนวนอนหรือแนวระดับ
รูปที่ 6.8 ทางซ้ายบล็อกน้ำหนัก 10 N แขวนตามแนวดิ่ง กับตาชั่งสปริงหนึ่งอัน ตาชั่งดึงขึ้นด้วยแรง 10 N ทางขวามี เมื่อแขวนสองตาชั่งสปริงดึงขึ้นด้านบน แต่ละตาชั่งสปริงด้วยแรงครึ่งหนึ่งของน้ำหนักหรือ 5 N
จากรูปจะเห็นว่าแรงดึงขึ้นของแต่ละตาชั่งสปริงเท่ากับครึ่งหนึ่งของน้ำหนักบล็อก ตาชั่งสปริงทั้งสองออกแรงดึงแรงลัพธ์รวมเท่ากับน้ำหนักของบล็อก ตามรูปผังแสดงใฟ้เห็นว่าคู่ของเวคเตอร์ 5 N มีแรงลัพธ์เป็น 10 N ตรงข้ามกับเวคเตอร์ 10 N แรงลัพธ์ที่กระทำต่อบล็อกเป็นศูนย์ และบล็อกอยู่นิ่งไม่เคลื่อนที่ กล่าวว่าอยู่ในภาวะสมดุล (equilibium) แนวคิดหลักก็คือถ้า บล็อกหนัก 10 N แขวนอยู่ได้อย่างสมดุล ผลลัพธ์จากแรงที่ดึงโดยสปริงทั้งคู่เทากับ 10 N
รูปที่ 6.9 ถ้ามุมระหว่างตาชั่งสปริงเพิ่มขึ้น การอ่านค่าน้ำหนักที่สปริงก็เพิ่มขึ้นด้วย ดังนั้นแรงลัพธ์ คือ ยังเวคเตอร์เส้นประ ยังคงมีค่า 10 N ทิศขึ้นด้านบน ที่ใช้ยึดน้ำหนักบล็อก
จากรูปนี้ เมื่อมุมจากแนวดิ่งเพิ่มขึ้นเป็น 75.5 องศา แต่ละสปริงออกแรงดึงเท่ากับ 20 N เพื่อก่อให้เกิดแรงลัพธ์ 10 N ตามที่มุมระหว่างตาชั่งสปริงเพิ่มขึ้น ค่าแรงกที่อ่านได้จากตาชั่งสปริงก็เพิ่มขึ้น กล่าวได้วามุมระหว่างด้านของสี่เหลี่ยมด้านขนาดเพิ่มขึ้นขนาดของด้านของสี่เหลี่ยมด้านขนานก็เพิ่มมากขึ้น ถ้าต้องการให้ด้านทะแยงยังคงเท่าเดิม ถ้าเข้าใจเรื่องนี้ก็จะเข้าใจว่า ทำไมลวดที่ขึงในแนวนอนไม่สามารถรับน้ำหนักตัวคนได้ ทั้งนี้เพราะแรงดึงในเส้นลวดที่่ขึงมีมากกว่าตัวคนที่อาจทำให้ขาดได้
คำถาม

ถ้าด็กเล่นแกว่งชิงช้าสองคนน้ำหนักเท่ากัน การแก่วงชิช้าแบบใดเชื่อกขาดง่ายกว่า
6.6 องค์ประกอบของเวคเตอร์
เมื่อมี 2 เวคเตอร์กระทำบนวัตถุเดียวกันอาจแทนด้วยเวคเตอร์ลัพธ์จาก 2 เวคเคอร์ เหลือเพียงเวคเตอร์เดียวที่มีผลเหมือนกันกับวัตถุ และในทางกลับกันสามารถทำได้ ที่คิดให้เวคเตอร์หนึ่งอาจจัดให้เป็นเวคเตอร์ลัพธ์ของ 2 เวคเตอร์ แต่ละเวคเตอร์กระทำต่อวัตถุในบางทิศทาง สองเวคเตอร์นี้คือองค์ประกอบของเวคเตอร์ที่กำหนด กระบวนการทีในการหาองค์ประกอบของเวคเตอร์หนึ่งเรียกว่าการแตกเวคเตอร์ (resolution) ถ้าเวคเตอร์คือแรงจะเรียกว่าการแตกแรง
รูป 6.10 ผู้ชายออกแรง F เข็นผลักรถตัดหญ้า สามารถแยกออกเป็นองค์ประกอบของ แรง X และ Y
เวคเตอร์ F เป็นแรงที่ผู้ชายออกแรง แยกออกเป็นองค์ประกอบของแรง Y ในแนวดิ่งกดลงไปบนพื้น เวคเตอร์ X เป็นองค์ประกอบของแรงในแนวระนาบ เป็นแรงไปข้างหน้าเคลื่อนเครื่องตัดหญ้า
รูปที่ 6.11 เวคเตอร์ V มีองค์ประกอบเวคเตอร์ X และ Y
เราสามารถหาขนาดองค์ประกอบของเวคเตอร์ โดยการวาดสี่เหลี่ยมผืนผ้าให้ F เป็นเส้นทะแยงมุมของสี่เหลี่ยมผืนผ้า X,Y เป็นด้านของสี่เหลี่ยมผืนผ้า เวคเตอร์ลัพธ์ F เกิดจากการรวมเวคเตอร์ X, Y
หลักที่ใช้ในการหาองค์ประกอบทางแนวดิ่งและแนวนอนค่อยข้างง่ายดังรูป 6.11 โดยให้เวคเตอร์ V อยู่ในทิศทางหนึ่งใช้แทนแรง หรือ เวคเตอร์ใดก็ตามที่อยู่ในประเด็นปัญหา แล้วลากเส้นตามแนวดิ่งและแนวนอน จากปลายเว็คเตอร์ V แล้วลากกรอบสี่เหลี่ยมผืนผ้า จากหัวลูกศรเว็คเตอร์ V แล้วจะได้ว่าองค์ประกอบของเว็คเตอร์ V แทนด้วยทิศทางและขนาดของเว็คเตอร์ X และ Y
6.7 องค์ประกอบของน้ำหนัก
สรุปบทที่ 6
ปริมาณเวคเตอร์ มีทั้งขนาดและทิศทาง
-เวคเตอร์หนึ่งๆแทนได้ด้วยลูกศรที่ความยาวแทนขนาดของเว็คเตอร์ ห้ัวลูกศรแทนทิศทางของปริมาณ
ผลรวมของแรงหลายแรงหรือผลรวมของความเร็วความเร็วหลายความเร็ว สามารถหาได้จากการใช้ผังไดอะแกรมเวคเตอร์ ที่วาดตามมาตราส่วน
-เมื่อบางอย่างอยู่ในสมดุล ผลลัพธ์ของแรงทั้งหมดมีส่วนทำให้สมดุล
เวคเตอร์เดี่ยวใดๆ สมารถที่จะแทนได้ด้วย 2 องค์ประกอบเวคเตอร์ เมื่อบวกองค์ประกอบทั้งสองเข้าด้วยกันแล้วได้เวคเตอร์เดิม
-บ่อยครั้งที่ทำให้ง่ายในการศึกษาองค์ประกอบในแนวระดับ และในแนวตั้งหรือดิ่ง ของแรง หรือ ความเร็ว
-เมื่อความโน้มถ่วงเป็นเพียงแรงเดียวที่กระทำในการเคลื่อนที่แบบโปรเจคไตล์ องค์ประกอบตามแนวระดับหรือแนวนอนของความเร็วไม่มีการเปลี่ยนแปลง
คำถามทบทวน
1.ปริมาณเวคเตอร์หนึ่งต่างจาก ปริมาณสเกลล่าหนึ่ง อย่างไร
2.ถ้าเวคเตอร์หนึ่ง ใช้ความยาว 1 cm แทนแรง 5 N จะมีแรงกี่นิวตันที่เวคเตอร์ ยาว 2 cm แทนได้
3. a. แรงลัพธ์เป็ฯเท่าใดจากคู่ของแรง 100 N ทิศขึ้นด้านบน และ 75 นิวตันทิศลงข้างล่าง
b. แรงลัพธ์ของแรงทั้งสองในข้อ a. จะเป็นเท่าใดถ้าทั้งสองแรงดังกล่าวกระทำในทิศลงล่าง
4. ทำไมจึงจัดให้อัตราเร็วเป็นปริมาณสเกลล่า และจัดให้ความเร็วเป็นปริมาณเวคเตอร์
5. ความเร็วลัพธ์ของเครื่องบินลำหนึ่งเป็นเท่าใด ที่ปกติบินด้วยอัตราเร็ว 200 km/h ถ้าบินสวนกับลมพัดไปด้านหลัง 50 km/h ? ลมพัดไปทางด้านหัวเครื่องบิน 50 km/h ?
6.สีเหลี่ยมด้านขนานคืออะไร?
7.เมื่อสร้างสี่เหลี่ยมด้านขนานเพื่อใช้ในการรวมแรง อะไรที่ใช้แทนแรงลัพธ์?
8.ขนาดของเว็คเตอร์ลัพธ์จากการรวมเว็คเตอร์ขนาด 4 และ 3 ที่ตั้งฉากกัน เป็นเท่าใด?
9.ขนาดของเวคเตอร์ลัพธ์จากคู่ของเวค์เตอร์ 100 N ที่ทำมุมฉากกันและกัน เป็นเท่าใด?
10.ทำไมแรงตึงในลวดราวตากผ้า ที่ตากผ้าจากการซักตามแนวระดับ มากกว่าผ้าที่แขวนลวดตามแนวตั้ง(ดิ่ง)
11. แรงลัพธ์สุทธิหรือเทียบเท่าเป็นเท่าใด เมื่อแรงลัพธ์นั้นกระทำต่อวัตถุแลัวอยู่ในภาวะสมดุล
12. จงเปรียบเทียบกับน้ำหนักตัวของคุณ แรงดึงในแขนเป็นเท่าใด เมื่อปล่อยให้ตัวห้อยอยู่ได้โดยไม่เคลื่อนไหวด้วยแขนเดียว ?, โดยทั้งสองแขน?
13.ให้บอกความแตกต่างระหว่างวิธีการรวมเวคเตอร์ทางเรขาคณิตกับ วิธีการแยกเวคเตอร์
14.ขนาดขององค์ประกอบในแนวนอน และแนวดิ่งเป็นเท่าใด ของเวคเตอร์ที่มีความยาว 100 หน่วย ที่วางทำมุมกับแนวระดับ 45 องศา ?
15.น้ำหนักของลูกบอลล์ที่กลิ้งลงตามพื้นเอียงสามารถแยกออกเป็นเวคเตอร์ได้เป็นสององค์ประกอบ องค์ประกอบหนึ่งตามแนวขนานกับพื้นเอียง อีกองค์ประกอบตั้งฉากพื้นเอียง
a. ที่มุมความชันพื้นเอียงเท่าใดที่ทำให้องค์ประกอบเวคเตอร์ของน้ำหนักลูกบอลเท่ากัน?
b. ด้วยมุมความชันเท่าใด? ที่องค์ประกอบเวคเตอร์ตามแนวพื้นเอียงเท่ากับศูนย์
c. ด้วยมุมความชันเท่าใด? ที่องค์ประกอบเวคเตอร์ตามแนวพื้นเอียงเท่ากับน้ำหนักของลูกบอลล์
เมื่อไรก็ตามที่ใช้ความยาวของลูกศรแทนขนาดของปริมาณ และทิศทางตามหัวลูกศรแทนทิศทางของปริมาณนั้น ลูกศรนี้เรียกว่า เวคเตอร์
ปริมาณบางปริมาณต้องการทั้งขนาดและทิศทางเพื่อให้อธิบายได้สมบูรณ์ เรียกว่าปริมาณเวคเตอร์ ตัวอย่างเช่นแรงหนึ่งๆ มีทั้งทิศทางและขนาด เช่นเดียวกับความเร็ว แรงและความเร็วจึงเป็นปริมาณเวคเตอร์ที่คุ้นเคยกันมากที่สุด แต่ยังมีปริมาณอื่นๆ จะกล่าวถึงในบทต่อไป
6.2 เวคเตอร์แทนแรง
ผู้ชายผลักด้วยแรง 100N และม้าดึงด้วยแรง 200 N เนื่องจากทั้งสองแรงอยู่ในทิศเดียวกัน ได้ผลลัพธ์เป็นแรงดึงเท่ากับผลร่วมขงอแรงผลักดึงในทิศเดียวกัน ถ้ารถบรรทุกของนี้เคลื่อนไปได้ราวกับว่าทั้งสองแรงแทนได้ด้วยแรงลัพธ์แรงเดียว
ต่อมาถ้าม้าผลักไปด้านหลังด้วยแรง 200 N ขณะที่ผู้ชายดึงด้วยแรง 100 N ตามรูป 6.1 ทางขวา แรงทั้งสองกระทำในทิศทางตรงกันข้าม แรงลัพธ์เท่ากับ 200 -100 = 100 N ไปในทิศที่แรงมีค่ามากกว่า
รูปที่ 6.1 แรงลัพธ์จากสองแรงขึ้นอยู่กับทิศทางของแรงและขนาดของแรงด้วย
การรวมเวคเตอร์
พิจารณาแรงที่ใช้ลากเรือบรรทุกวัสดุโดยม้าดังรูป 6.3 ทางซ้าย เมื่อเว็คเตอร์ทำมุมกันและกัน ในเทคนิคทางเรขาคณิตในการรวมเวคเตอร์เพื่อหาขนาดและทิศทางของแรงลัพธ์หรือเว็คเตอร์ลัพธ์
เวคเตอร์ 2 เวคเตอร์ที่นำมาบวกกัน โดยวาดปลายทั้งสองของเวคเตอร์แตะทำมุมกันดังรูปที่6.3 โดยลากเส้นประจากหัวลูกศรเวคเตอร์ของแต่ละเวคเตอร์โดยลากให้ขนานกับเว็คเตอร์เดิมแต่ละเว็คเตอร์ เป็นการฉายเวคเตอร์ไป จะเกิดเป็นรูปสี่เหลี่ยมด้านขนาน(parallelogram) เพราะว่าด้านตรงข้ามกันขนานกันและมีความยาวเท่ากัน ผลลัพธ์ของสองแรงรวมกันคือเส้นทะแยงของสี่เหลี่ยมด้านขนาน
รูปที่ 6.3 เรือเคลื่อนที่ไปภายใต้การกระทำของแรงเลัพธ์ของแรงสองแรง F1 และ F2 ทิศทางของแรงลัพธ์อยู่ในแนวทะแยงของสี่เหลี่ยมด้านขนานที่ โดยแรง F1 และ F2 ประกอบเป็นด้านของสี่เหลี่ยมด้านขนาน
จะเห็นว่าเรื่องไม่ได้เคลื่อนไปตามทิศทางของแรงแต่ละแรงที่ทำโดยม้า แต่ไปในทิศทางของแรงลัพธ์ แรงลัพธ์นั้นหาได้โดยใช้กฏของการบวกเวคเตอร์คือ
ผลรวมของสองเวคเตอร์อาจแทนด้วยเส้นทะแยงของสี่เหลี่ยมด้านขนานโดยใช้สองเวคเตอร์เป็นด้านของสี่เหลี่ยมด้านขนานนี้
เราสามารถประยุกต์กฏนี้กับคู่อื่นๆ ของแรงที่กระทำที่จุดร่วมเดียวกัน รูป 6.4 แสดงแรง 3 N ไปทางทิศเหนือและแรง 4 N ไปทางตะวันออก ใช้มาตราส่วน 1 N : 1ซม. เราสามารถสร้างสี่เหลี่ยมดานขนานโดยใช้เว็คเตอร์ทั้งสองเป็นด้านของสี่เหลี่ยม เป็นสี่เหลี่ยมพื้นผ้า ถ้าลากเส้นทะแยงมุมจากปลายหรือหางของเวคเตอร์ทั้งคู่ ก็จะได้แรงลัพธ์ แล้ววัดหาความยาวของเส้นทะแยงของสี่เหลี่ยม
รูปที่ 6.4 แรง 3 N และ 4 N บวกกันได้แรงลัพธ์ 5 N
แบบฝึกหัด
1. โดยวิธีการรวมแรงหาแรงลัพธ์โดยใช้สี่เหลี่ยมด้านขนาน จากแรง 3N และ 4N แทนโดยเวคเตอร์ดังในรูปข้างล่าง วาดด้วยมาตราส่วน 1 cm: 1N ให้วัดแรงลัพธ์ด้วยไม้บรรทัด
2. ค่าแรงลัพธ์ต่ำสุดและสูงสุดที่เป็นไปได้มีค่าเท่าใดสำหรับแรง 3N และ 4 N กระทำต่อวัตถุเดียวกัน
อีกตัวอย่างพิจารณาเครื่องบินเล็กบินไปทางเหนือด้วยความเร็ว 80 km/h ผ่านข้ามบริเวณที่มีลมพัดไปทางตะวันออกด้วยความเร็ว 60 km/h ตามรูป 6.5 แสดงเว็คเตอร์ของความเร็วเครื่องบินและความเร็วลม ถ้ากำหนด 1cm: 20km/h แรงลัพธ์ในแนวทะแยงของสี่เหลี่ยม วัดได้ 5 cm ซึ่งแทนความเร็ว 100 km/h ในทิศตะวันออกเฉียงเหนือ
การที่เวคเตอร์ทำมุมตั้งฉากกัน สามารถหาแรงลัพธ์โดยใช้ทฤษฎีบททางเรขคณิตของปิทากอรัส (pythagorean theorem) กล่าวว่า กำลังสองของด้านตรงข้ามมุมฉาก เท่ากับ ผลบวกของกำลังสองของอีกสองด้านประกอบมุมฉาก จะสังเกตเห็นว่ามี 2 สามเหลี่ยมมุมฉากในสีเหลี่ยมด้านขนาน (ในกรณีนี้เป็นสีเหลี่ยมพื้นผ้า) ตามรูป 6,5 จากแต่ละด้านของสามเหลี่ยมเหล่านี้จะได้
(เวคเตอร์ลัพธ์)^2 = (60 km/h)^2 = (80 km/h)^2
= 3600 (km/h)^2 + 6400 (km/h)^2
= 10000 (km/h)^2
รากทีสองหรือถอดรูท ของ 10000 (km/h)^2 คือ 100 km/h ตามคาดไว้
ในกรณีเฉพาะที่เป็นเวคเตอร์เท่ากันและตั้งฉากกัน สี่เหลี่ยมด้านขนานจะกลายเป็นสี่เหลี่ยมผืนผ้า เส้นทะแยง สำหรับสี่เหลี่ยมจตุรัสความยาวในแนวทะแยงหรือแรงลัพธ์เป็น 21/2 หรือ 1.414 คูณด้วยความยาวด้านหนึ่งของเว็คเตอร์เสมอ เช่นแรงลัพธ์ของเว็คเตอร์ ที่เขนาด 100 N เท่ากัน กระทำตั้งฉากกัน จะได้แรงลัพธ์ ลัพธ์เท่ากับ 1.414 คูณ 100 เท่ากับ 141.4 N
6.5 สมดุล (Equlibrium)
เพื่อจะให้เข้าใจพิจารณาสถานะการณ์ตามรูป
รูปที่ 6.8 ทางซ้ายบล็อกน้ำหนัก 10 N แขวนตามแนวดิ่ง กับตาชั่งสปริงหนึ่งอัน ตาชั่งดึงขึ้นด้วยแรง 10 N ทางขวามี เมื่อแขวนสองตาชั่งสปริงดึงขึ้นด้านบน แต่ละตาชั่งสปริงด้วยแรงครึ่งหนึ่งของน้ำหนักหรือ 5 N
จากรูปจะเห็นว่าแรงดึงขึ้นของแต่ละตาชั่งสปริงเท่ากับครึ่งหนึ่งของน้ำหนักบล็อก ตาชั่งสปริงทั้งสองออกแรงดึงแรงลัพธ์รวมเท่ากับน้ำหนักของบล็อก ตามรูปผังแสดงใฟ้เห็นว่าคู่ของเวคเตอร์ 5 N มีแรงลัพธ์เป็น 10 N ตรงข้ามกับเวคเตอร์ 10 N แรงลัพธ์ที่กระทำต่อบล็อกเป็นศูนย์ และบล็อกอยู่นิ่งไม่เคลื่อนที่ กล่าวว่าอยู่ในภาวะสมดุล (equilibium) แนวคิดหลักก็คือถ้า บล็อกหนัก 10 N แขวนอยู่ได้อย่างสมดุล ผลลัพธ์จากแรงที่ดึงโดยสปริงทั้งคู่เทากับ 10 N
รูปที่ 6.9 ถ้ามุมระหว่างตาชั่งสปริงเพิ่มขึ้น การอ่านค่าน้ำหนักที่สปริงก็เพิ่มขึ้นด้วย ดังนั้นแรงลัพธ์ คือ ยังเวคเตอร์เส้นประ ยังคงมีค่า 10 N ทิศขึ้นด้านบน ที่ใช้ยึดน้ำหนักบล็อก
จากรูปนี้ เมื่อมุมจากแนวดิ่งเพิ่มขึ้นเป็น 75.5 องศา แต่ละสปริงออกแรงดึงเท่ากับ 20 N เพื่อก่อให้เกิดแรงลัพธ์ 10 N ตามที่มุมระหว่างตาชั่งสปริงเพิ่มขึ้น ค่าแรงกที่อ่านได้จากตาชั่งสปริงก็เพิ่มขึ้น กล่าวได้วามุมระหว่างด้านของสี่เหลี่ยมด้านขนาดเพิ่มขึ้นขนาดของด้านของสี่เหลี่ยมด้านขนานก็เพิ่มมากขึ้น ถ้าต้องการให้ด้านทะแยงยังคงเท่าเดิม ถ้าเข้าใจเรื่องนี้ก็จะเข้าใจว่า ทำไมลวดที่ขึงในแนวนอนไม่สามารถรับน้ำหนักตัวคนได้ ทั้งนี้เพราะแรงดึงในเส้นลวดที่่ขึงมีมากกว่าตัวคนที่อาจทำให้ขาดได้
คำถาม
จากรูปข้างบน ภาพทั้งสองหนักเท่ากันแขวนไว้ดังแสดง การแขวนแบบใด การใช้เส้นเชือกช่วยแขวนรูปแบบใดที่ขาดง่ายกว่า

ถ้าด็กเล่นแกว่งชิงช้าสองคนน้ำหนักเท่ากัน การแก่วงชิช้าแบบใดเชื่อกขาดง่ายกว่า
6.6 องค์ประกอบของเวคเตอร์
เมื่อมี 2 เวคเตอร์กระทำบนวัตถุเดียวกันอาจแทนด้วยเวคเตอร์ลัพธ์จาก 2 เวคเคอร์ เหลือเพียงเวคเตอร์เดียวที่มีผลเหมือนกันกับวัตถุ และในทางกลับกันสามารถทำได้ ที่คิดให้เวคเตอร์หนึ่งอาจจัดให้เป็นเวคเตอร์ลัพธ์ของ 2 เวคเตอร์ แต่ละเวคเตอร์กระทำต่อวัตถุในบางทิศทาง สองเวคเตอร์นี้คือองค์ประกอบของเวคเตอร์ที่กำหนด กระบวนการทีในการหาองค์ประกอบของเวคเตอร์หนึ่งเรียกว่าการแตกเวคเตอร์ (resolution) ถ้าเวคเตอร์คือแรงจะเรียกว่าการแตกแรง
รูป 6.10 ผู้ชายออกแรง F เข็นผลักรถตัดหญ้า สามารถแยกออกเป็นองค์ประกอบของ แรง X และ Y
เวคเตอร์ F เป็นแรงที่ผู้ชายออกแรง แยกออกเป็นองค์ประกอบของแรง Y ในแนวดิ่งกดลงไปบนพื้น เวคเตอร์ X เป็นองค์ประกอบของแรงในแนวระนาบ เป็นแรงไปข้างหน้าเคลื่อนเครื่องตัดหญ้า
รูปที่ 6.11 เวคเตอร์ V มีองค์ประกอบเวคเตอร์ X และ Y
เราสามารถหาขนาดองค์ประกอบของเวคเตอร์ โดยการวาดสี่เหลี่ยมผืนผ้าให้ F เป็นเส้นทะแยงมุมของสี่เหลี่ยมผืนผ้า X,Y เป็นด้านของสี่เหลี่ยมผืนผ้า เวคเตอร์ลัพธ์ F เกิดจากการรวมเวคเตอร์ X, Y
หลักที่ใช้ในการหาองค์ประกอบทางแนวดิ่งและแนวนอนค่อยข้างง่ายดังรูป 6.11 โดยให้เวคเตอร์ V อยู่ในทิศทางหนึ่งใช้แทนแรง หรือ เวคเตอร์ใดก็ตามที่อยู่ในประเด็นปัญหา แล้วลากเส้นตามแนวดิ่งและแนวนอน จากปลายเว็คเตอร์ V แล้วลากกรอบสี่เหลี่ยมผืนผ้า จากหัวลูกศรเว็คเตอร์ V แล้วจะได้ว่าองค์ประกอบของเว็คเตอร์ V แทนด้วยทิศทางและขนาดของเว็คเตอร์ X และ Y
6.7 องค์ประกอบของน้ำหนัก
รูปที่ 6.12 น้ำหนักของลูกบอลล์แทนด้วยเว็คเตอร์ W องค์ประกอบที่ตั้งฉากกัน A และ B
จะเห็นว่าเฉพาะเมื่อสโลปหรือความชันเป็นศูนย์เมื่อพื้นผิวอยู่ในแนวระดับ องค์ประกอบ A เท่ากับศูนย์ เป็นเหตุผลที่อัตราเร็วลูกบอลไม่เปลี่ยนในแนวระดับ แล้ว B เท่ากับ W ลูกบอลล์กดไปที่พื้นผิวด้วยแรงทั้งหมด แต่เมื่อสโลป 90 องศา องค์ประกอบ B จะกลายเป็นศูนย์ และองค์ประกอบ A เท่ากับ W
คำถาม
ที่มมเท่าใดที่องค์ประกอบ A และ B ในรูป 6.12 มีขนาดเท่ากัน และที่มุมเท่าใดที่ A = W และที่มุมเท่าใด
สรุปบทที่ 6
ปริมาณเวคเตอร์ มีทั้งขนาดและทิศทาง
-เวคเตอร์หนึ่งๆแทนได้ด้วยลูกศรที่ความยาวแทนขนาดของเว็คเตอร์ ห้ัวลูกศรแทนทิศทางของปริมาณ
ผลรวมของแรงหลายแรงหรือผลรวมของความเร็วความเร็วหลายความเร็ว สามารถหาได้จากการใช้ผังไดอะแกรมเวคเตอร์ ที่วาดตามมาตราส่วน
-เมื่อบางอย่างอยู่ในสมดุล ผลลัพธ์ของแรงทั้งหมดมีส่วนทำให้สมดุล
เวคเตอร์เดี่ยวใดๆ สมารถที่จะแทนได้ด้วย 2 องค์ประกอบเวคเตอร์ เมื่อบวกองค์ประกอบทั้งสองเข้าด้วยกันแล้วได้เวคเตอร์เดิม
-บ่อยครั้งที่ทำให้ง่ายในการศึกษาองค์ประกอบในแนวระดับ และในแนวตั้งหรือดิ่ง ของแรง หรือ ความเร็ว
-เมื่อความโน้มถ่วงเป็นเพียงแรงเดียวที่กระทำในการเคลื่อนที่แบบโปรเจคไตล์ องค์ประกอบตามแนวระดับหรือแนวนอนของความเร็วไม่มีการเปลี่ยนแปลง
คำถามทบทวน
1.ปริมาณเวคเตอร์หนึ่งต่างจาก ปริมาณสเกลล่าหนึ่ง อย่างไร
2.ถ้าเวคเตอร์หนึ่ง ใช้ความยาว 1 cm แทนแรง 5 N จะมีแรงกี่นิวตันที่เวคเตอร์ ยาว 2 cm แทนได้
3. a. แรงลัพธ์เป็ฯเท่าใดจากคู่ของแรง 100 N ทิศขึ้นด้านบน และ 75 นิวตันทิศลงข้างล่าง
b. แรงลัพธ์ของแรงทั้งสองในข้อ a. จะเป็นเท่าใดถ้าทั้งสองแรงดังกล่าวกระทำในทิศลงล่าง
4. ทำไมจึงจัดให้อัตราเร็วเป็นปริมาณสเกลล่า และจัดให้ความเร็วเป็นปริมาณเวคเตอร์
5. ความเร็วลัพธ์ของเครื่องบินลำหนึ่งเป็นเท่าใด ที่ปกติบินด้วยอัตราเร็ว 200 km/h ถ้าบินสวนกับลมพัดไปด้านหลัง 50 km/h ? ลมพัดไปทางด้านหัวเครื่องบิน 50 km/h ?
6.สีเหลี่ยมด้านขนานคืออะไร?
7.เมื่อสร้างสี่เหลี่ยมด้านขนานเพื่อใช้ในการรวมแรง อะไรที่ใช้แทนแรงลัพธ์?
8.ขนาดของเว็คเตอร์ลัพธ์จากการรวมเว็คเตอร์ขนาด 4 และ 3 ที่ตั้งฉากกัน เป็นเท่าใด?
9.ขนาดของเวคเตอร์ลัพธ์จากคู่ของเวค์เตอร์ 100 N ที่ทำมุมฉากกันและกัน เป็นเท่าใด?
10.ทำไมแรงตึงในลวดราวตากผ้า ที่ตากผ้าจากการซักตามแนวระดับ มากกว่าผ้าที่แขวนลวดตามแนวตั้ง(ดิ่ง)
11. แรงลัพธ์สุทธิหรือเทียบเท่าเป็นเท่าใด เมื่อแรงลัพธ์นั้นกระทำต่อวัตถุแลัวอยู่ในภาวะสมดุล
12. จงเปรียบเทียบกับน้ำหนักตัวของคุณ แรงดึงในแขนเป็นเท่าใด เมื่อปล่อยให้ตัวห้อยอยู่ได้โดยไม่เคลื่อนไหวด้วยแขนเดียว ?, โดยทั้งสองแขน?
13.ให้บอกความแตกต่างระหว่างวิธีการรวมเวคเตอร์ทางเรขาคณิตกับ วิธีการแยกเวคเตอร์
14.ขนาดขององค์ประกอบในแนวนอน และแนวดิ่งเป็นเท่าใด ของเวคเตอร์ที่มีความยาว 100 หน่วย ที่วางทำมุมกับแนวระดับ 45 องศา ?
15.น้ำหนักของลูกบอลล์ที่กลิ้งลงตามพื้นเอียงสามารถแยกออกเป็นเวคเตอร์ได้เป็นสององค์ประกอบ องค์ประกอบหนึ่งตามแนวขนานกับพื้นเอียง อีกองค์ประกอบตั้งฉากพื้นเอียง
a. ที่มุมความชันพื้นเอียงเท่าใดที่ทำให้องค์ประกอบเวคเตอร์ของน้ำหนักลูกบอลเท่ากัน?
b. ด้วยมุมความชันเท่าใด? ที่องค์ประกอบเวคเตอร์ตามแนวพื้นเอียงเท่ากับศูนย์
c. ด้วยมุมความชันเท่าใด? ที่องค์ประกอบเวคเตอร์ตามแนวพื้นเอียงเท่ากับน้ำหนักของลูกบอลล์
สรุปบทที่ 5 คำถามทบทวน
สรุป มโนทัศน์
การปฏิสัมพันธ์ระหว่าง 2 สิ่ง ก่อให้เกิดคู่ของแรง
-แต่ละสิ่งออกแรงกระทำต่อกันและกัน
-แรงสองแรงนั้นเรียกว่าแรงกริยาและแรงปฏิกริยา
-แรงกริยาและแรงปฏิกริยามีขนาดของแรงเท่ากันแต่มีทิศทางตรงข้ามกัน
คำถามทบทวน
1. มีหลักฐานใดที่สามารถนำมาอ้างสนับสนุนแรวคิดที่ว่ากำแพงสามารถออกแรงผลักตัวคุณ
2. หมายความว่าอะไรโดยการกล่าวว่ามีแรงหนึ่งๆ อันเนื่องจากการปฏิสัมพันธ์
3. เมื่อฆ้อนปฏิสัมพันธ์กับตะปูซึ่งออกแรงกระทำต่ออะไร
4. เมื่อฆ้อนออกแรงกระทำต่อตะปู จำนวนแรงเป็นอย่างไรเมื่อเปรียบเทียบกับที่ตะปูกระทำต่อฆ้อน
5. ทำไมจึงกล่าวว่าแรงเกิดขึ้นเป็นคู่เท่านั้น
6. เมื่อคุณเดินไปตามพื้นห้อง จริงแล้วมีอะไรผลักคุณอยู่ขณะเดิน
7. เมื่อว่ายน้ำ คุณผลักน้ำไปด้านหล้ง เรียกว่าเป็นแรงกริยา แล้วแรงปฏิกริยาที่ชัดเจนคืออะไร
8. ถ้าแรงกริยาคือเชือกที่คันธนู กระทำบนลูกธนู ให้ค่าแรงปฏิกริยา
9. เมื่อคุณกระโดดขึ้นในอากาศ โลกดึงดูดกลับลงมา ให้หาแรงปฏิกริยา
10. เมื่อยิงปืนไรเฟิน ขนาดของแรงปืนที่กระทำต่อกระสุนเปรียบเทียบกับแรงที่กระสุนทำต่อปืนไรเฟินเป็นอย่างไร ความเร่งของปืนไรเฟินและกระสุนปืนเปรียบเทียบกันเป็นอย่างไร
11. เนื่องจากแรงกริยาและแรงปฏิกริยาขนาดเท่ากันเสมอ และทิศทางตรงกันข้ามกัน ทำไมทั้งสองแรงไม่หักล้างกันและกัน และทำให้แรงลัพธ์มากกว่าศูนย์เป็นไปไม่ได้
คำถามท่ 12-15 อ้างถึงรูปที่ 5.10
a. นอกจากแรงโน้มถ่วงแล้วมีแรงใดบ้างกระทำต่อเกวียน
b.ใช้สัญลักษณ์ตัวอักษรแสดงในรูป อะไรคือแรงลัพธ์ที่กระทำต่อเกวียน
13. a. นอกจากแรงโน้มถ่วงแล้วมีแรงกี่แรงที่กระทำต่อม้า
b. แรงลัพธ์ใดที่กระทำต่อม้า
c. มีกี่แรงกระทำโดยม้าบนวัตถุอื่นๆ
14. a. มีกี่แรงที่กระทำต่อระบบ ม้า-เกวียน
b. มีแรงลัพธ์ใดกระทำต่อระบบ ม้า-เกวียน
15. เพื่อที่จะเพิ่มอัตราเร็ว ทำไมม้าต้องออกแรงผลักพื้นมากขึ้นกว่าที่ม้าดึงเกวียน
16. ถ้าคุณชกกำแพงด้วยแรง 200 นิวตัน มีแรงเท่าใดกระทำต่อคุณ
17.ทำไมคุณไม่สามารถจะชกหรือตีขนนกที่ลอยอยู่ในอากาศด้วยแรง 200 นิวตัน
18. ทำไมจึงง่ายกว่าที่เดินบนพรมกว่าเดินบนพื้นที่ขัดจนเป็นมันลื่น
19.ถ้าเราเดินบนไม้ซุงที่ลอยน้ำ ไม้ซุงเคลื่อนไปด้านหลัง ทำไมจึงเป็นเช่นนั้น
20.สมมุติว่าเราชั่งน้ำหนักขณะที่ยืนติดกับซิงค์อ่างล้างหน้าหน้าห้องน้ำ โดยใช้แนวคิดเรื่องแรงกริยาและแรงปฏิกริยา ทำไมอ่านค่าน้ำหนักจากตาชั่งได้น้อยลงเมื่อเอามือกดซิงค์ไปด้วย(รูปA) และทำไมอ่านค่าน้ำหนักได้มากขึ้นถ้าเอามือดึงซิงค์ขึ้นจากตอนล่างของซิงค์
21. คู่ของน้ำหนัก 50 นิวตันจับยึดไว้กับตาชั่งสปริงดังแสดงในรูป B ตาชั่งสปริงอ่านค่าได้ค่อ 0, 50, หรือ 100 N (แนะ.. คงจะอ่านได้แตกต่างกันหรือไม่ถ้าด้านหนึ่งแทนที่จะแขวนน้ำหนัก 50 Nไว้ก็ใช้เมือจับไว้แทน
การปฏิสัมพันธ์ระหว่าง 2 สิ่ง ก่อให้เกิดคู่ของแรง
-แต่ละสิ่งออกแรงกระทำต่อกันและกัน
-แรงสองแรงนั้นเรียกว่าแรงกริยาและแรงปฏิกริยา
-แรงกริยาและแรงปฏิกริยามีขนาดของแรงเท่ากันแต่มีทิศทางตรงข้ามกัน
คำถามทบทวน
1. มีหลักฐานใดที่สามารถนำมาอ้างสนับสนุนแรวคิดที่ว่ากำแพงสามารถออกแรงผลักตัวคุณ
2. หมายความว่าอะไรโดยการกล่าวว่ามีแรงหนึ่งๆ อันเนื่องจากการปฏิสัมพันธ์
3. เมื่อฆ้อนปฏิสัมพันธ์กับตะปูซึ่งออกแรงกระทำต่ออะไร
4. เมื่อฆ้อนออกแรงกระทำต่อตะปู จำนวนแรงเป็นอย่างไรเมื่อเปรียบเทียบกับที่ตะปูกระทำต่อฆ้อน
5. ทำไมจึงกล่าวว่าแรงเกิดขึ้นเป็นคู่เท่านั้น
6. เมื่อคุณเดินไปตามพื้นห้อง จริงแล้วมีอะไรผลักคุณอยู่ขณะเดิน
7. เมื่อว่ายน้ำ คุณผลักน้ำไปด้านหล้ง เรียกว่าเป็นแรงกริยา แล้วแรงปฏิกริยาที่ชัดเจนคืออะไร
8. ถ้าแรงกริยาคือเชือกที่คันธนู กระทำบนลูกธนู ให้ค่าแรงปฏิกริยา
9. เมื่อคุณกระโดดขึ้นในอากาศ โลกดึงดูดกลับลงมา ให้หาแรงปฏิกริยา
10. เมื่อยิงปืนไรเฟิน ขนาดของแรงปืนที่กระทำต่อกระสุนเปรียบเทียบกับแรงที่กระสุนทำต่อปืนไรเฟินเป็นอย่างไร ความเร่งของปืนไรเฟินและกระสุนปืนเปรียบเทียบกันเป็นอย่างไร
11. เนื่องจากแรงกริยาและแรงปฏิกริยาขนาดเท่ากันเสมอ และทิศทางตรงกันข้ามกัน ทำไมทั้งสองแรงไม่หักล้างกันและกัน และทำให้แรงลัพธ์มากกว่าศูนย์เป็นไปไม่ได้
คำถามท่ 12-15 อ้างถึงรูปที่ 5.10
a. นอกจากแรงโน้มถ่วงแล้วมีแรงใดบ้างกระทำต่อเกวียน
b.ใช้สัญลักษณ์ตัวอักษรแสดงในรูป อะไรคือแรงลัพธ์ที่กระทำต่อเกวียน
13. a. นอกจากแรงโน้มถ่วงแล้วมีแรงกี่แรงที่กระทำต่อม้า
b. แรงลัพธ์ใดที่กระทำต่อม้า
c. มีกี่แรงกระทำโดยม้าบนวัตถุอื่นๆ
14. a. มีกี่แรงที่กระทำต่อระบบ ม้า-เกวียน
b. มีแรงลัพธ์ใดกระทำต่อระบบ ม้า-เกวียน
15. เพื่อที่จะเพิ่มอัตราเร็ว ทำไมม้าต้องออกแรงผลักพื้นมากขึ้นกว่าที่ม้าดึงเกวียน
16. ถ้าคุณชกกำแพงด้วยแรง 200 นิวตัน มีแรงเท่าใดกระทำต่อคุณ
17.ทำไมคุณไม่สามารถจะชกหรือตีขนนกที่ลอยอยู่ในอากาศด้วยแรง 200 นิวตัน
18. ทำไมจึงง่ายกว่าที่เดินบนพรมกว่าเดินบนพื้นที่ขัดจนเป็นมันลื่น
19.ถ้าเราเดินบนไม้ซุงที่ลอยน้ำ ไม้ซุงเคลื่อนไปด้านหลัง ทำไมจึงเป็นเช่นนั้น
20.สมมุติว่าเราชั่งน้ำหนักขณะที่ยืนติดกับซิงค์อ่างล้างหน้าหน้าห้องน้ำ โดยใช้แนวคิดเรื่องแรงกริยาและแรงปฏิกริยา ทำไมอ่านค่าน้ำหนักจากตาชั่งได้น้อยลงเมื่อเอามือกดซิงค์ไปด้วย(รูปA) และทำไมอ่านค่าน้ำหนักได้มากขึ้นถ้าเอามือดึงซิงค์ขึ้นจากตอนล่างของซิงค์
21. คู่ของน้ำหนัก 50 นิวตันจับยึดไว้กับตาชั่งสปริงดังแสดงในรูป B ตาชั่งสปริงอ่านค่าได้ค่อ 0, 50, หรือ 100 N (แนะ.. คงจะอ่านได้แตกต่างกันหรือไม่ถ้าด้านหนึ่งแทนที่จะแขวนน้ำหนัก 50 Nไว้ก็ใช้เมือจับไว้แทน
วันเสาร์ที่ 23 กันยายน พ.ศ. 2560
บทที่ 5 กฏการเคลื่อนที่ข้อที่ 3 ของนิวตัน แรงกระทำและแรงตอบโต้
5.1 การปฏิสัมพันธ์ก่อให้เกิดแรง
ความเข้าใจเรื่องแรงที่ง่ายที่สุด คือการจัดให้แรงหนึ่งคือการผลักหรือการดึง มองให้ใกล้ชิดเข้าไปพบว่าแรงหนึ่งๆ ไม่ได้เป็นสิ่งใดในตัวเอง แต่เนื่องจากการปฏิสัมพันธ์ของสิ่งหนึ่งกับอีกสิ่ง ตัวอย่างเช่น การเอาฆ้อนตอกตะปูเพื่อผลักตะปูเข้าไปในไม้กระดาน มีวัตถุหนึ่งปฏิสัมพันธ์กับอีกวัตถุหนึ่ง อันไหนที่ออกแรงกระทำและอันไหนได้รับแรงกระทำ นิวตันได้คิดถึงคำถามเช่นนี้ และยิ่งเขาคิดก็ยิ่งทำให้เขาได้ข้อสรุปว่าไม่มีวัตถุใดที่จัดให้เป็นผู้กระทำหรือผู้รับเป็นการเฉพาะ เข้าให้เหตุผลว่าธรรมชาตินั้นสมมาตร และสรุปว่าวัตถุทั้งสองจะต้องวางตัวเท่าเทียมกัน ฆ้อนออกแรงต่อตะปู แต่ฆ้อนเองก็หยุดลงในกระบวนการ ด้วยการปฏิสัมพันธ์เดียวกันที่ขับดันให้ตะปูทำให้ฆ้อนเคลื่อนช้าลง การสังเกตเช่นนี้นำ
นิวตันตั้งกฏข้อที่ 3 ขึ้น คือกฏของการกระทำและกระทำตอบโต้ (action and reaction)
5.2 กฏข้อที่ 3 ของนิวตัน
กฏข้อที่ 3 ของนิวตันกล่าวว่า
เมื่อไรก็ตามที่วัตถุหนึ่งออกแรงกระทำต่อวัตถุที่สอง วัตถุที่สองออกแรงกระทำตอบโต้ด้วยแรงขนาด เดียวกับแต่ทิศทางตรงข้ามกันกับที่วัตถุแรกกระทำ
แรงหนึ่งเรียกว่าแรงกระทำหรือแรงกริยา (action force) อีกแรกเรียกว่าแระกระทำตอบโต้หรือแรงปฏิกิริยา(reaction force) ไม่ต้องสนใจว่าแรงใดจะเรียกว่าแรงกริยาหรือแรงปฏิกริยา ทั้งสองมีความเท่าเทียมกัน สิ่งที่สำคัญก็คือไม่มีแรงคงอยู่ได้ถ้าไม่มีอีกวัตถุ แรงกริยาและปฏิกริยาประกอบกันเป็นคู่ของแรง กฏข้อที่สามของนิวตันมักจะกล่าวว่า สำหรับทุกแรงกริยาจะต้องมีแรงปฏิกริยาขนาดเท่ากันทิศทางตรงกันข้ามเกิดขึ้นเสมอ
ในทุกการปฏิสัมพันธ์ แรงเกิดขึ้นเป็นคู่เสมอ ตัวอย่างเช่น การเดินข้ามพื้นห้อง เท้าเราออกแรงกดที่พื้น ในทางกลับกันพื้นก็ออกแรงดันขึ้นมา เช่นเดียวกับที่ยางรถยนต์ออกแรงกดทับไปบนถนน ในทางกลับกันถนนก็ผลักดันล้อยางกลับ ในการว่ายน้ำเราใช้มือผลักดันน้ำไปด้านหลัง ขณะเดียวกันน้ำก็ผลักดันเราไปด้านหน้า จะเห็นว่าที่แต่ละขณะมีคู่ของแรงกระทำกันและกัน แรงในตัวอย่างดังกล่าวขึ้นอยู่กับความเสียดทาน เมื่อเปรียบเทียบคน รถยนต์ อยู่บนน้ำแข็งอาจไม่สามารถที่จะออกแรงกริยากระทำต่อน้ำแข็งเพื่อจำเป็นให้เกิดแรงปฏิกริยา
คำถาม
1. วัตถุระเบิดเช่นแท่งไดนาไมท์บรรจุแรงไว้หรือไม่?
2. รถยนต์คันหนึ่งเร่งความเร็วขึ้นไปตามถนน พูดอย่างตรงไปตรงมาได้หรือไม่ว่า แรงใดที่ทำให้รถเคลื่อนที่?
5.3 การแยกให้เห็นแรงกริยาและแรงปฏิกริยา
การแยกคู่ของแรงกริยาและแรงปฏิกริยาไม่ได้ชัดเจนได้ในทันที ตัวอย่างเช่น อะไรคือแรงกริยาและแรงปฏิกริยาในกรณีการตกลงมาของก้อนหิน กล่าวคือเมื่อไม่มีแรงต้านทานอากาศ คุณอาจกล่าวว่าแรงความโน้มถ่วงของโลกกระทำต่อก้อนหินเป็นแรงกริยา แต่คุณสามารถหาแรงปฏิกริยาได้หรือไม่ คือน้ำหนักของก้อนหินหรือไม่ เปล่าเลย น้ำหนักก็เป็นเพียงอีกชื่อหนึ่งของแรงโน้มถ่วง เป็นเหตุจากพื้นดินที่ลูกหินไปตกกระทบหรือไม่ เปล่าเลยพื้นดินไม่ได้กระทำต่อก้อนหินจนกระทั่งก้อนหินกระทบพื้นดิน
โดยพบวิธีที่ง่ายที่จัดแรงกริยาและแรงปฏิกริยา โดยกล่าวถึงแรงหนึ่งจากคู่ของแรง กล่าวถึงแรงกริยาในรูป วัตถุ A ออกแรงกระทำต่อวัตถฺุB แล้วกล่าวถึงเกี่ยวกับแรงปฏิกริยากล่าวง่ายๆ ทำนองเดียวกันว่า วัตถุ B ออกแรงกระทำต่อวัตถุA
การกล่าวเช่นนี้จำได้ง่าย ที่จำเป็นเพียงแต่เปลี่ยนจาก A และ B ไปมา ดังนั้นในกรณีการตกของก้อนหิน(วัตถุB) เป็นแรงปฏิกิริยากออกแรงกระทำต่อโลก
5.6 ปัญหาม้าลากเกวียน
สถานะการณ์คล้ายกับการเต๊ะฟุตบอล ม้าที่ลากเกวียนก็อาจคิดว่าเป็นไปไม่ได้ที่จะลากเกวียนเพราะแรงที่ม้าลากเกวียนจะหักล้างกับแรงขนาดเท่ากันทิศตรงข้ามกันที่เกวียนดึงม้าไว้ การเกิดความเร่งจึงเป็นไปไม่ได้ การคิดอย่างระมัดระวังก็จะเข้าใจปัญหาคลาสสิกนี้
ปัญหา ม้า เกวียนนี้ สามารถมองในมุมมองที่ต่างกัน แรกสุดในมุมมองของเกษตรกรผู้ขับเกวียนเป็นกังวนอยู่เฉพาะตัวเกวียน(ระบบเกวียน) แล้วยังมีมุมมองของม้า (ระบบม้า) สุดท้ายยังมีมุมมองทั้งหมดของม้าและเกวียน(ระบบ ม้าและเกวียน)
อันแรกไปที่มุมมองของเกษตรกร เขาใส่ใจกับแรงที่กระทำต่อเกวียนที่ โดยแรงลัพธ์กระทำต่อเกวียนเมื่อหารด้วยมวลของเกวียน ก็จะได้ความเร่งจริง แต่เขาไม่ได้สนใจว่ามีปฏิกริยาใดต่อม้า
เมื่อพิจารณาที่มุมมองของม้า เป็นจริงที่ว่าแรงทิศทางตรงข้ามโดยเกวียนกระทำต่อม้า ที่จะไปยับยั้งขัดขวาง หากไม่มีแรงนี้ม้าคงควบไปสู่เป้าหมายได้ แรงนี้มีแนวโน้มที่จะดึงม้าถอยกลับไป และตัวม้าเคลื่อนที่ไปข้างหน้าได้อย่างไร? โดยการผลักที่พื้นไปด้านหลัง ขณะเดียวกันพื้นก็ผลักม้าไปข้างหน้า เพื่อที่จะดึงเกวียนไปม้าต้องออกแรงผลักพื้นไปด้านหลัง ถ้าม้าออกแรงผลักไปด้านหลังมากกว่าที่ดึงเกวียน ก็จะมีแรงลัพธ์กระทำต่อม้า เคลื่อนที่ด้วยความเร่ง เมื่อเกวียนเคลื่อนมีอัตราเร็ว ม้าจำเป็นต้องออกแรงเฉพาะดันไปด้านหลังที่พื้นด้วยแรงที่เพียงพอที่เริ่มต้นเท่ากับแรงเสียดทานระหว่างล้อเกวียนและพื้น
สุดท้ายมองไปที่ระบบ ม้า-เกวียน รวมทั้งหมด จากมุมมองนี้การลากเกวียนของม้า และปฏิกริยาที่เกวียนกระทำต่อม้าเป็นแรงภายในระบบ คือแรงที่กระทำและกระทำตอบโต้ภายในระบบ ไม่มีส่วนใดๆ ต่อการทำให้เกิดความเร่งของระบบ ม้า-เกวียน จากมุมมองนี้จึงไม่นำมาคิด ระบบสามารถจะเคลื่อนที่มีความเร่งได้เฉพาะแรงจากภายนอก ตัวอย่างเช่นถ้ารถยนต์ของคุณเสียเมื่อต้องการนำออกจากโรงรถ คุณไม่สามารถทำให้มันเคลื่อนที่ได้โดยนั่งอยู่ภายในรถและผลักที่แผงควบคุม คุณต้องออกมาภายนอกรถและทำให้พื้นผลักรถ คล้ายคลึงกับระบบ ม้า-เกวียน แรงปฏิกิริยาโดยพื้นที่ผลักระบบให้เคลื่อนไป
คำถาม
1.จากรูป 5-10 อะไรคือแรงลัพธ์ที่กระทำต่อเกวียน และที่กระทำต่อม้า และแนวโน้มที่พื้นกระทำกลับ
2. ทันทีที่ม้าลากเกวียนไปได้ที่อัตราเร็วที่ประสงค์แล้ว ม้าจำเป็นต้องออกแรงกระทำต่อเกวียนต่อไปหรือไม่
ความเข้าใจเรื่องแรงที่ง่ายที่สุด คือการจัดให้แรงหนึ่งคือการผลักหรือการดึง มองให้ใกล้ชิดเข้าไปพบว่าแรงหนึ่งๆ ไม่ได้เป็นสิ่งใดในตัวเอง แต่เนื่องจากการปฏิสัมพันธ์ของสิ่งหนึ่งกับอีกสิ่ง ตัวอย่างเช่น การเอาฆ้อนตอกตะปูเพื่อผลักตะปูเข้าไปในไม้กระดาน มีวัตถุหนึ่งปฏิสัมพันธ์กับอีกวัตถุหนึ่ง อันไหนที่ออกแรงกระทำและอันไหนได้รับแรงกระทำ นิวตันได้คิดถึงคำถามเช่นนี้ และยิ่งเขาคิดก็ยิ่งทำให้เขาได้ข้อสรุปว่าไม่มีวัตถุใดที่จัดให้เป็นผู้กระทำหรือผู้รับเป็นการเฉพาะ เข้าให้เหตุผลว่าธรรมชาตินั้นสมมาตร และสรุปว่าวัตถุทั้งสองจะต้องวางตัวเท่าเทียมกัน ฆ้อนออกแรงต่อตะปู แต่ฆ้อนเองก็หยุดลงในกระบวนการ ด้วยการปฏิสัมพันธ์เดียวกันที่ขับดันให้ตะปูทำให้ฆ้อนเคลื่อนช้าลง การสังเกตเช่นนี้นำ
นิวตันตั้งกฏข้อที่ 3 ขึ้น คือกฏของการกระทำและกระทำตอบโต้ (action and reaction)
5.2 กฏข้อที่ 3 ของนิวตัน
กฏข้อที่ 3 ของนิวตันกล่าวว่า
เมื่อไรก็ตามที่วัตถุหนึ่งออกแรงกระทำต่อวัตถุที่สอง วัตถุที่สองออกแรงกระทำตอบโต้ด้วยแรงขนาด เดียวกับแต่ทิศทางตรงข้ามกันกับที่วัตถุแรกกระทำ
แรงหนึ่งเรียกว่าแรงกระทำหรือแรงกริยา (action force) อีกแรกเรียกว่าแระกระทำตอบโต้หรือแรงปฏิกิริยา(reaction force) ไม่ต้องสนใจว่าแรงใดจะเรียกว่าแรงกริยาหรือแรงปฏิกริยา ทั้งสองมีความเท่าเทียมกัน สิ่งที่สำคัญก็คือไม่มีแรงคงอยู่ได้ถ้าไม่มีอีกวัตถุ แรงกริยาและปฏิกริยาประกอบกันเป็นคู่ของแรง กฏข้อที่สามของนิวตันมักจะกล่าวว่า สำหรับทุกแรงกริยาจะต้องมีแรงปฏิกริยาขนาดเท่ากันทิศทางตรงกันข้ามเกิดขึ้นเสมอ
ในทุกการปฏิสัมพันธ์ แรงเกิดขึ้นเป็นคู่เสมอ ตัวอย่างเช่น การเดินข้ามพื้นห้อง เท้าเราออกแรงกดที่พื้น ในทางกลับกันพื้นก็ออกแรงดันขึ้นมา เช่นเดียวกับที่ยางรถยนต์ออกแรงกดทับไปบนถนน ในทางกลับกันถนนก็ผลักดันล้อยางกลับ ในการว่ายน้ำเราใช้มือผลักดันน้ำไปด้านหลัง ขณะเดียวกันน้ำก็ผลักดันเราไปด้านหน้า จะเห็นว่าที่แต่ละขณะมีคู่ของแรงกระทำกันและกัน แรงในตัวอย่างดังกล่าวขึ้นอยู่กับความเสียดทาน เมื่อเปรียบเทียบคน รถยนต์ อยู่บนน้ำแข็งอาจไม่สามารถที่จะออกแรงกริยากระทำต่อน้ำแข็งเพื่อจำเป็นให้เกิดแรงปฏิกริยา
คำถาม
1. วัตถุระเบิดเช่นแท่งไดนาไมท์บรรจุแรงไว้หรือไม่?
2. รถยนต์คันหนึ่งเร่งความเร็วขึ้นไปตามถนน พูดอย่างตรงไปตรงมาได้หรือไม่ว่า แรงใดที่ทำให้รถเคลื่อนที่?
5.3 การแยกให้เห็นแรงกริยาและแรงปฏิกริยา
การแยกคู่ของแรงกริยาและแรงปฏิกริยาไม่ได้ชัดเจนได้ในทันที ตัวอย่างเช่น อะไรคือแรงกริยาและแรงปฏิกริยาในกรณีการตกลงมาของก้อนหิน กล่าวคือเมื่อไม่มีแรงต้านทานอากาศ คุณอาจกล่าวว่าแรงความโน้มถ่วงของโลกกระทำต่อก้อนหินเป็นแรงกริยา แต่คุณสามารถหาแรงปฏิกริยาได้หรือไม่ คือน้ำหนักของก้อนหินหรือไม่ เปล่าเลย น้ำหนักก็เป็นเพียงอีกชื่อหนึ่งของแรงโน้มถ่วง เป็นเหตุจากพื้นดินที่ลูกหินไปตกกระทบหรือไม่ เปล่าเลยพื้นดินไม่ได้กระทำต่อก้อนหินจนกระทั่งก้อนหินกระทบพื้นดิน
โดยพบวิธีที่ง่ายที่จัดแรงกริยาและแรงปฏิกริยา โดยกล่าวถึงแรงหนึ่งจากคู่ของแรง กล่าวถึงแรงกริยาในรูป วัตถุ A ออกแรงกระทำต่อวัตถฺุB แล้วกล่าวถึงเกี่ยวกับแรงปฏิกริยากล่าวง่ายๆ ทำนองเดียวกันว่า วัตถุ B ออกแรงกระทำต่อวัตถุA
การกล่าวเช่นนี้จำได้ง่าย ที่จำเป็นเพียงแต่เปลี่ยนจาก A และ B ไปมา ดังนั้นในกรณีการตกของก้อนหิน(วัตถุB) เป็นแรงปฏิกิริยากออกแรงกระทำต่อโลก
รูปที่ 5.4 คู่ของแรงระหว่างวัตถุ A และวัตถุ B สังเกตได้วาแรงกริยา A ออกแรงกระทำต่อวัตถุ B แรงปฏิกริยาคือแรงที่วัตถุ B กระทำต่อวัตถุ A
5.4 แรงกริยาและแรงปฏิกริยาบนวัตถุที่มีมวลแตกต่างกัน
เป็นเรื่องน่าสนใจที่ว่าก้อนหินออกแรงดึงโลกทั้งหมดเท่ากับที่โลกดึงดูดก้อนหินนั้น ขนาดของแรงเท่ากันในทิศทางตรงข้ามกัน เรากล่าวว่าก้อนหินตกลงสู่โลก เรากล่าวเช่นเดียวกันได้หรือไม่ว่าโลกตกลงสู่ก้อนหิน คำตอบคือ ใช่กล่าวได้เช่นนั้น แต่ไม่ได้เต็มปากเต็มคำ แม้ว่าแรงที่ลูกหินกระทำต่อโลก และที่โลกกระทำต่อลูกหินจะเท่ากัน แต่มวลค่อนข้างจะแตกต่างกัน ย้อนกลับไปที่กฏข้อที่ 2 ของนิวตันที่กล่าวไว้ว่า แต่ละความเร่งที่มี ไม่เพียงแต่เป็นสัดส่วนกับแรงลัพธ์เท่านั้นแต่ยังเป็นปฏิภาคกลับกับมวลของวัตถุนั้นด้วย พิจารณามวลขนาดมหึมาของโลก ไม่ประหลาดใจเลยว่าเราไม่สามารถรู้ได้ถึงความเร่งที่น้อยมากๆ กล่าวตรงๆแม้ว่าโลกจะเคลื่อนขึ้นไปยังก้อนหินที่กำลังตก ดังนั้นขณะที่เราก้าวขึ้นลงขอบขอบถนน ถนนก็เคลื่อนมายังเราน้อยมากไม่อาจรู้ได้
ทำนองเดียวกันที่ไม่เกินความจริงมากนัก ตัวอย่างเกิดขึ้นในการยิงปืนไรเฟิน เมื่อปืนถูกยิงแรงที่ปืนกระทำต่อกระสุนปืนเท่ากับแรงที่กระสุนปืนกระทำต่อต่อปืน เป็นผลให้เกิดอากาศที่เรียกว่าปืนถีบ เราอาจคาดหวังว่าปืนจะถีบมากกว่าที่ควรจะเป็น หรือประหลาดใจว่าทำไมกระสุนปืนเคลื่อนที่เร็วมากเปรียบเทียบกับตัวปืน ตามกฏข้อที่ 2 ของนิวตัน เราต้องพิจารณามวลที่เกี่ยวข้อง
รูปที่ 5.6 แรงที่ทำให้ปื้นเคลื่อนไปด้านหลัง เท่ากับแรงที่ขับดันให้กระสุนเคลื่อนไปตามลำกล้องปืน แล้วทำไมกระสุนถึงได้เคลื่อนต่อไปด้วยความเร่งมากกว่าตัวปืนมากนัก
สมมุติว่าให้ F แทนทั้งแรงกริยา และเแรงปฏิกริยา m เป็นมวลของกระสุนปืน และ M เป็นมวลของปืนไรเฟิน แล้วความเร่งของกระสุน และความเร่งของตัวปืนไรเฟิน สามารถคำนวณหาได้จากสัดส่วนของแรงต่อมวล
ความเร่งของกระสุนหาได้คือ A = F/m
ความเร่งของตัวปืนไรเฟิน คือ a = F/M
เห็นหรือไม่ว่าทำไมการเปลี่ยนแปลงการเคลื่อนที่ของกระสุนจึงมีสูงมาก เมื่อเทียบกับการเปลี่ยนแปลงการเคลื่อนที่ของตัวปืนไรเฟิน แรงที่กำหนดที่กระทำต่อมวลขนาดเล็กก่อให้เกิดความเร่งมาก ขณะที่แรงเดียวกันกระทำต่อมวลขนาดใหญ่ก่อให้เกิดความเร่งไม่มาก
เราเคยสังเกตการทำงานตามกฏข้อที่ 3 ของนิวตัน เมื่อสุนัขหนึ่ง แกว่งหางตัวเอง ถ้าหางของสุนัขค่อนข้างมวลมากเหมือนกันเมื่อเทียบกับมวลของสุนัข จะสังเกตพบว่าหางก็ทำให้ตัวสุนัขแกว่งเหมือนกัน ผลที่เกิดขึ้นนี้สามารถสังเกตได้น้อยไม่ชัดเจน สำหรับสุนัขที่หางมีมวลค่อนข้างน้อย
คำถาม
สมมุติว่าคุณกำลังนังที่นั่งแถวหน้ารถบัสที่กำลังเพิ่มอัตราเร็ว คุณได้สังเกตเห็น แมลงตัวหนึ่งบินชนกระจกหน้ารถ แน่นอนว่ามีแรงกระจกกระทำต่อตัวแมลง และตัวแมลงความเร่งลดลงในทันที และแรงทีเท่ากันที่แมลงกระทำต่อกระจกในทิศทางตรงข้าม มากกว่า น้อยกว่า หรือ เท่ากัน แล้วผลการลดความเร่งของรถบัน มากกว่า น้อยกว่า หรือ เหมือนกับของแมลง
5.5 ทำไมแรงกริยาและแรงปฏิกริยาไม่หักล้างกัน
แรงกริยาและแรงปฏิกริยากระทำบนวัตถุที่แตกต่างกัน ถ้าแรงกริยาเป็นเหตุจาก A กระทำต่อ B, แล้วแรงปฏิกริยามีเหตุจาก B กระทำต่อ A แรงกริยาที่กระทำต่อ B แรงปฏิกริยากระทำต่อ A แรงกริยา และปฏิกริยาไม่ได้กระทำบนวัตถุเดียวกัน ดังนั้นแรงกริยาและแรงปฏิกริยาจึงไม่เคยที่จะหักล้างกันและกัน
ในเรื่องนี้ทำให้เข้าใจผิดกันบ่อยๆ ตัวอย่างเช่น สมมุติว่ามีเพื่อนที่ได้ยินเกี่ยวกับกฏข้อที่ 3 ของนิวตัน แล้วพูดว่าคุณไม่สามารถเคลื่อนลูกฟุตบอลได้โดยการเต๊ะ เหตุผลเพราะว่าแรงปฏิกิริยาโดยลูกบอลที่ถูกเต๊ะเท่ากับและทิศตรงข้ามกับแรงที่คุณเต๊ะลูกฟุตบอล แรงลัพธ์จึงเป็นศูนย์ ดังนั้นถ้าลูกบอลยังคงนิ่งอยู่ตอนเริ่มต้น ก็จะยังคงนิ่งต่อไป ไม่ว่าคุณจะเต๊ะบอลแรงมากเท่าใดก็ตาม แล้วคุณจะบอกเพื่อนคุณอย่างไร
ในเรื่องนี้คุณรู้ว่าถ้าคุณเต๊ะบอล ลูกบอลนั้นก็เคลื่อนด้วยความเร่ง ความเร่งนี้ขัดกับกฏข้อที่ 3 ของนิวตันหรือไม่ คำตอบคือไม่แน่นอน การเต๊ะออกแรงกระทำต่อลูกบอล ไม่มีแรงอื่นที่มากระทำต่อลูกบอล แรงลัพธ์ที่กระทำต่อลูกบอลเป็นจริงและลูกบอลก็มีความเร่ง แล้วแรงปฏิกริยาละ โอเคมันไม่ได้กระทำต่อลูกบอลแต่กระทำต่อเท้าของคุณ แรงปฏิกริยาหน่วงเท้าของคุณขณะที่เท้าไปสัมผัสกับลูกบอล จงบอเพื่อนคุณว่าแรงที่กระทำกับลูกบอลกับแรงที่กระทำบนเท้าไม่สามารถหักล้างกันได้
สถานะการณ์คล้ายกับการเต๊ะฟุตบอล ม้าที่ลากเกวียนก็อาจคิดว่าเป็นไปไม่ได้ที่จะลากเกวียนเพราะแรงที่ม้าลากเกวียนจะหักล้างกับแรงขนาดเท่ากันทิศตรงข้ามกันที่เกวียนดึงม้าไว้ การเกิดความเร่งจึงเป็นไปไม่ได้ การคิดอย่างระมัดระวังก็จะเข้าใจปัญหาคลาสสิกนี้
ปัญหา ม้า เกวียนนี้ สามารถมองในมุมมองที่ต่างกัน แรกสุดในมุมมองของเกษตรกรผู้ขับเกวียนเป็นกังวนอยู่เฉพาะตัวเกวียน(ระบบเกวียน) แล้วยังมีมุมมองของม้า (ระบบม้า) สุดท้ายยังมีมุมมองทั้งหมดของม้าและเกวียน(ระบบ ม้าและเกวียน)
อันแรกไปที่มุมมองของเกษตรกร เขาใส่ใจกับแรงที่กระทำต่อเกวียนที่ โดยแรงลัพธ์กระทำต่อเกวียนเมื่อหารด้วยมวลของเกวียน ก็จะได้ความเร่งจริง แต่เขาไม่ได้สนใจว่ามีปฏิกริยาใดต่อม้า
เมื่อพิจารณาที่มุมมองของม้า เป็นจริงที่ว่าแรงทิศทางตรงข้ามโดยเกวียนกระทำต่อม้า ที่จะไปยับยั้งขัดขวาง หากไม่มีแรงนี้ม้าคงควบไปสู่เป้าหมายได้ แรงนี้มีแนวโน้มที่จะดึงม้าถอยกลับไป และตัวม้าเคลื่อนที่ไปข้างหน้าได้อย่างไร? โดยการผลักที่พื้นไปด้านหลัง ขณะเดียวกันพื้นก็ผลักม้าไปข้างหน้า เพื่อที่จะดึงเกวียนไปม้าต้องออกแรงผลักพื้นไปด้านหลัง ถ้าม้าออกแรงผลักไปด้านหลังมากกว่าที่ดึงเกวียน ก็จะมีแรงลัพธ์กระทำต่อม้า เคลื่อนที่ด้วยความเร่ง เมื่อเกวียนเคลื่อนมีอัตราเร็ว ม้าจำเป็นต้องออกแรงเฉพาะดันไปด้านหลังที่พื้นด้วยแรงที่เพียงพอที่เริ่มต้นเท่ากับแรงเสียดทานระหว่างล้อเกวียนและพื้น
สุดท้ายมองไปที่ระบบ ม้า-เกวียน รวมทั้งหมด จากมุมมองนี้การลากเกวียนของม้า และปฏิกริยาที่เกวียนกระทำต่อม้าเป็นแรงภายในระบบ คือแรงที่กระทำและกระทำตอบโต้ภายในระบบ ไม่มีส่วนใดๆ ต่อการทำให้เกิดความเร่งของระบบ ม้า-เกวียน จากมุมมองนี้จึงไม่นำมาคิด ระบบสามารถจะเคลื่อนที่มีความเร่งได้เฉพาะแรงจากภายนอก ตัวอย่างเช่นถ้ารถยนต์ของคุณเสียเมื่อต้องการนำออกจากโรงรถ คุณไม่สามารถทำให้มันเคลื่อนที่ได้โดยนั่งอยู่ภายในรถและผลักที่แผงควบคุม คุณต้องออกมาภายนอกรถและทำให้พื้นผลักรถ คล้ายคลึงกับระบบ ม้า-เกวียน แรงปฏิกิริยาโดยพื้นที่ผลักระบบให้เคลื่อนไป
รูปที่ 5.10 ทุกคู่ของแรงที่กระทำต่อม้า เกวียนดังที่แสดง 1)แรงดึง P ต่อม้าและต่อเกวียนกันและกัน 2)แรงผลัก F ต่อม้าและพื้นกันและกัน และ 3) แรงเสียดทาน f ระหว่างล้อเกวียนและพื้น สังเกตุเห็นว่ามีแรงสองแรงที่แต่ละแรงให้กับเกวียนและม้า สามารถเห็นได้ว่าความเร่งของระบบ ม้า-เกวียนเนื่องจากแรงลัพธ์ F-f
คำถาม
1.จากรูป 5-10 อะไรคือแรงลัพธ์ที่กระทำต่อเกวียน และที่กระทำต่อม้า และแนวโน้มที่พื้นกระทำกลับ
2. ทันทีที่ม้าลากเกวียนไปได้ที่อัตราเร็วที่ประสงค์แล้ว ม้าจำเป็นต้องออกแรงกระทำต่อเกวียนต่อไปหรือไม่
วันอาทิตย์ที่ 17 กันยายน พ.ศ. 2560
สรุปบทที่ 4 คำถามทบทวน
ย่อสรุปมโนทัศน์
วัตถุที่มีความเร่ง ... เปลี่ยนอัตราเร็ว และหรือเปลี่ยนทิศทาง
- ความเร่งของวัตถุหนึ่งเป็นปฏิภาคตรงกับแรงลัพธ์ที่กระทำต่อวัตถุนั้น
- ความเร่งของวัตถุหนึ่งๆเป็นปฏิภาคกลับกับมวลของวัตถุนั้น
- ความเร่งเท่ากับแรงลัพธ์หารด้วยมวลและอยู่ในทิศทางเดียวกับแรงลัพธ์
วัตถุหนึ่งๆ ยังคงอยู่ในสภาพนิ่ง หรือเคลื่อนที่ต่อไปด้วยความเร็วคงที่เมื่อแรงลัพธ์ที่กระทำต่อวัตถุนั้นเป็นศูนย์
-เมื่อวัตถุหนึ่งอยู่ในสภาวะนิ่ง น้ำหนักของวัตถุจะสมดุลโดยหักล้างกับแรงรับวัตถุขนาดเท่ากัน
-เมื่อวัตถุกำลังเคลื่อนที่ด้วยความเร็วคงที่ขณะที่ให้แรงจากภายนอกกระทำต่อวัตถุ แรงนั้นต้องสมดุลกับแรงต้านทานขนาดที่เท่ากัน (หรือความเสียดทาน)
การประยุกต์ใช้แรงหนึ่งไปบนพื้นผิวต่างๆ ก่อให้เกิดควาาดัน
-ความดันเท่ากับแรงหารด้วยพื้นที่ที่ประยุกต์ให้แรง เมื่อแรงที่ให้ตั้งฉากกับพื้นที่ผิว
วัตถุที่กำลังตกลงมาถูกกระทำโดยแรงโน้มถ่วง ซึ่งดึงวัตถุลงมาด้วยแรงน้ำหนักของวัตถุนั้น
- การตกอย่างอิสระที่ไม่คิดแรงเสียดทานอากาศ ความเร่งการตกลงมาของวัตถุทั้งหลายจะเท่ากันโดยไม่ขึ้นอยู่กับมวล
- เมื่อมีแรงเสียดทานอากาศ การตกลงมาของวัตถุ จะเกิดความเร่งจนกระทั้งวัตถุเคลื่อนที่เข้าสู่อัตราเร็วปลายสุดท้าย
-ที่อัตราเร็วปลาย แรงต้านทานจากอากาศหักลัางสมดุลกับแรงความโน้มถ่วง
คำถามทบทวน
1.จงแบ่งแยกระหว่างความสัมพันธ์ที่กำหนดความเร่ง และความสัมพันธ์ที่กล่าวถึงว่าความเร่งเกิดขึ้นอย่างไร
2. หมายถึงอะไรที่บอกว่าแรงลัพธ์กระทำต่อวัตถุ
3. แรง 10 N และ 20 N มีทิศทางเดียวกันกระทำต่อวัตถุ มีแรงลัพธ์กระทำต่อวัตถุเท่าใด
4. ถ้าแรงมีที่กระทำต่อวัตถุหนึ่งเท่ากับ 50 N ในทิศทางหนึ่ง และ 30 นิวตันในทิศทางตรงกันข้ามกัน และ แรงลัพธ์เท่าใดที่กระทำต่อวัตถุ
5. สมมุติว่าเกวียนคันหนึ่งกำลังเคลื่อนที่ด้วยแรงลัพธ์ ถ้าแรงลัพธ์เพิ่มเป็นสองเท่า ตอนนี้มีการเปลี่ยนความเร่งเท่าใด
6. สมมุติว่าเกวียนกำลังเคลื่อนที่ด้วยแรงลัพธ์ ถ้าเกวียนบรรทุกของแล้วทำให้มวลเพิ่มขึ้นเป็นสองเท่า ตอนนี้ความเร่งเปลี่่ยนไปเท่าใด
7. ให้แยกแยะระหว่างมโนทัศน์ของการปฏิภาคตรง กับการปฏิภาคกลับ สนับสนุนคำตอบด้วยตัวอย่าง
8. กฏข้อที่สองของนิวตันกล่าวอย่างไร ในเชิงบรรยายด้วยคำพูด และในรูปของสมการ
9.ต้องใช้แรงเท่าใดที่จรวจมวล 20000kg เกิดความเร่ง 1 m/s^2
10.มีแรงที่โต๊ะรับไว้เท่าใดหรือกระทำต่อหนังสือน้ำหนัก 15 N เมื่อวางหนังสือบนโต๊ะ และมีแรงลัพธ์กระทำต่อหนังสือเท่าใดในกรณีนี้
11. เมื่อถุงตะปูหนัก 100 นิวตันแขวนไว้ด้วยเชื่อกโดยไม่เคลื่อนที่ มีแรงตึงในเส้นเชือกที่กระทำเท่าใด จะเป็นอย่างไรถ้ายึดถุงตะปูด้วยเชือก 4 เส้น
12. อะไรเป็นสาเหตุของความเสียดทาน และในทิศทางใดที่ความเสียดทานกระทำต่อวัตถุที่เคลื่อนที่เลื่อนไถล
13. ถ้าแรงเสียดทานกระทำต่อเปลลากเลื่อน 100 N จะต้องใช้แรงเท่าใดให้เปลลากเลื่อนยังคงมีความเร็วคงที่ต่อไป จะต้องมีแรงลัพธ์กระทำต่อเปลลากเลื่อนเท่าใด และจะมีความเร่งเท่าใด
14. ให้บอกข้อแตกต่างระหว่างแรงและความดัน
15.อันไหนก่อให้เกิดความดันต่อพื้นมากกว่ากัน ยากรถยนต์หน้าแคบ กับ ยางหน้ากว้างที่น้ำหนักเดียวกัน
16.แรงความโน้มถ่วงเป็นสองเท่ากระทำต่อก้อนหิน 2kg เทียบกับก้อนหิน 1 kg ทำไมก้อนหิน 2 kg ไม่เคลื่อนตกลงมาด้วยความเร่งเป็นสองเท่า
17.ขนนกและเหรียญปล่อยให้ตกลงมาด้วยอัตราเร่งเดียวกันได้อย่างไรในหลอดศูนยากาศ
18.ทำไมขนนกและเหรียญที่ปล่อยให้ตกลงมาภายใต้ความดันอากาศมีอัตราเร่งแตกต่างกัน
19.มีแรงต้านอากาศเท่าใดกระทำต่อถุงตะปู 100 N ที่ตกลงมาด้วยอัตราเร็วปลายสุดท้าย
20.ความต้านทานอากาศและน้ำหนักของวัตถุที่กำลังตกเปรียบเทียบกันเป็นอย่างไรเมื่อเคลื่อนที่ถึงอัตราเร็วปลาย
วัตถุที่มีความเร่ง ... เปลี่ยนอัตราเร็ว และหรือเปลี่ยนทิศทาง
- ความเร่งของวัตถุหนึ่งเป็นปฏิภาคตรงกับแรงลัพธ์ที่กระทำต่อวัตถุนั้น
- ความเร่งของวัตถุหนึ่งๆเป็นปฏิภาคกลับกับมวลของวัตถุนั้น
- ความเร่งเท่ากับแรงลัพธ์หารด้วยมวลและอยู่ในทิศทางเดียวกับแรงลัพธ์
วัตถุหนึ่งๆ ยังคงอยู่ในสภาพนิ่ง หรือเคลื่อนที่ต่อไปด้วยความเร็วคงที่เมื่อแรงลัพธ์ที่กระทำต่อวัตถุนั้นเป็นศูนย์
-เมื่อวัตถุหนึ่งอยู่ในสภาวะนิ่ง น้ำหนักของวัตถุจะสมดุลโดยหักล้างกับแรงรับวัตถุขนาดเท่ากัน
-เมื่อวัตถุกำลังเคลื่อนที่ด้วยความเร็วคงที่ขณะที่ให้แรงจากภายนอกกระทำต่อวัตถุ แรงนั้นต้องสมดุลกับแรงต้านทานขนาดที่เท่ากัน (หรือความเสียดทาน)
การประยุกต์ใช้แรงหนึ่งไปบนพื้นผิวต่างๆ ก่อให้เกิดควาาดัน
-ความดันเท่ากับแรงหารด้วยพื้นที่ที่ประยุกต์ให้แรง เมื่อแรงที่ให้ตั้งฉากกับพื้นที่ผิว
วัตถุที่กำลังตกลงมาถูกกระทำโดยแรงโน้มถ่วง ซึ่งดึงวัตถุลงมาด้วยแรงน้ำหนักของวัตถุนั้น
- การตกอย่างอิสระที่ไม่คิดแรงเสียดทานอากาศ ความเร่งการตกลงมาของวัตถุทั้งหลายจะเท่ากันโดยไม่ขึ้นอยู่กับมวล
- เมื่อมีแรงเสียดทานอากาศ การตกลงมาของวัตถุ จะเกิดความเร่งจนกระทั้งวัตถุเคลื่อนที่เข้าสู่อัตราเร็วปลายสุดท้าย
-ที่อัตราเร็วปลาย แรงต้านทานจากอากาศหักลัางสมดุลกับแรงความโน้มถ่วง
คำถามทบทวน
1.จงแบ่งแยกระหว่างความสัมพันธ์ที่กำหนดความเร่ง และความสัมพันธ์ที่กล่าวถึงว่าความเร่งเกิดขึ้นอย่างไร
2. หมายถึงอะไรที่บอกว่าแรงลัพธ์กระทำต่อวัตถุ
3. แรง 10 N และ 20 N มีทิศทางเดียวกันกระทำต่อวัตถุ มีแรงลัพธ์กระทำต่อวัตถุเท่าใด
4. ถ้าแรงมีที่กระทำต่อวัตถุหนึ่งเท่ากับ 50 N ในทิศทางหนึ่ง และ 30 นิวตันในทิศทางตรงกันข้ามกัน และ แรงลัพธ์เท่าใดที่กระทำต่อวัตถุ
5. สมมุติว่าเกวียนคันหนึ่งกำลังเคลื่อนที่ด้วยแรงลัพธ์ ถ้าแรงลัพธ์เพิ่มเป็นสองเท่า ตอนนี้มีการเปลี่ยนความเร่งเท่าใด
6. สมมุติว่าเกวียนกำลังเคลื่อนที่ด้วยแรงลัพธ์ ถ้าเกวียนบรรทุกของแล้วทำให้มวลเพิ่มขึ้นเป็นสองเท่า ตอนนี้ความเร่งเปลี่่ยนไปเท่าใด
7. ให้แยกแยะระหว่างมโนทัศน์ของการปฏิภาคตรง กับการปฏิภาคกลับ สนับสนุนคำตอบด้วยตัวอย่าง
8. กฏข้อที่สองของนิวตันกล่าวอย่างไร ในเชิงบรรยายด้วยคำพูด และในรูปของสมการ
9.ต้องใช้แรงเท่าใดที่จรวจมวล 20000kg เกิดความเร่ง 1 m/s^2
10.มีแรงที่โต๊ะรับไว้เท่าใดหรือกระทำต่อหนังสือน้ำหนัก 15 N เมื่อวางหนังสือบนโต๊ะ และมีแรงลัพธ์กระทำต่อหนังสือเท่าใดในกรณีนี้
11. เมื่อถุงตะปูหนัก 100 นิวตันแขวนไว้ด้วยเชื่อกโดยไม่เคลื่อนที่ มีแรงตึงในเส้นเชือกที่กระทำเท่าใด จะเป็นอย่างไรถ้ายึดถุงตะปูด้วยเชือก 4 เส้น
12. อะไรเป็นสาเหตุของความเสียดทาน และในทิศทางใดที่ความเสียดทานกระทำต่อวัตถุที่เคลื่อนที่เลื่อนไถล
13. ถ้าแรงเสียดทานกระทำต่อเปลลากเลื่อน 100 N จะต้องใช้แรงเท่าใดให้เปลลากเลื่อนยังคงมีความเร็วคงที่ต่อไป จะต้องมีแรงลัพธ์กระทำต่อเปลลากเลื่อนเท่าใด และจะมีความเร่งเท่าใด
14. ให้บอกข้อแตกต่างระหว่างแรงและความดัน
15.อันไหนก่อให้เกิดความดันต่อพื้นมากกว่ากัน ยากรถยนต์หน้าแคบ กับ ยางหน้ากว้างที่น้ำหนักเดียวกัน
16.แรงความโน้มถ่วงเป็นสองเท่ากระทำต่อก้อนหิน 2kg เทียบกับก้อนหิน 1 kg ทำไมก้อนหิน 2 kg ไม่เคลื่อนตกลงมาด้วยความเร่งเป็นสองเท่า
17.ขนนกและเหรียญปล่อยให้ตกลงมาด้วยอัตราเร่งเดียวกันได้อย่างไรในหลอดศูนยากาศ
18.ทำไมขนนกและเหรียญที่ปล่อยให้ตกลงมาภายใต้ความดันอากาศมีอัตราเร่งแตกต่างกัน
19.มีแรงต้านอากาศเท่าใดกระทำต่อถุงตะปู 100 N ที่ตกลงมาด้วยอัตราเร็วปลายสุดท้าย
20.ความต้านทานอากาศและน้ำหนักของวัตถุที่กำลังตกเปรียบเทียบกันเป็นอย่างไรเมื่อเคลื่อนที่ถึงอัตราเร็วปลาย
วันศุกร์ที่ 15 กันยายน พ.ศ. 2560
บทที่ 4 กฏข้อที่ 2 ของนิวตัน ... แรงและความเร่ง
วัตถุทั้งมีการเริ่มต้นเคลื่อนที่
เคลื่อนที่ช้าลง เคลื่อนที่เป็นทางโค้ง
บทที่แล้วกล่าวถึงวัตถุที่จุดนิ่งหรือเคลื่อนที่ด้วยความเร็วคงที่
โดยไม่มีแรงลัพธ์ใดมากระทำ
บทนี้จะครอบคลุมมากขึ้นที่มีตัวการทำให้เปลี่ยนแปลงการเคลื่อนที่
คือการเคลื่อนที่ด้วยความเร่ง
จากบทที่ 2 อธิบายความเร่งเป็นการเปลี่ยนแปลงการเคลื่อนที่เร็วเท่าใด
โดยเฉพาะการเปลี่ยนความเร็วต่อหน่วยหรือช่วงเวลา เขียนได้คือ
ความเร่ง = การเปลี่ยนความเร็ว/ ช่วงเวลา
นี่คือนิยามความหมายของความเร่ง
ในบทนี้จะเน้นถึงสาเหตุของความเร่ง ได้แก่แรง
อักษรกรีก ∆(delta) มักใช้เป็นสัญลักษณ์สำหรับ
.การเปลี่ยนแปลง หรือ ส่วนแตกต่างกันใน
ในเครื่องหมาย เดลต้า a =∆v/∆t เมื่อ ∆ v คือการเปลี่ยนความเร็ว
และ ∆t คือการเปลี่ยนแปลงเวลา
4.1 แรงสาเหตุของความเร่ง
พิจารณาวัตถุที่หยุดนิ่ง เช่นลูกบอล เมื่อให้แรงกระทำต่อลูกบอล
ลูกบอลจะเคลื่อนที่ เนื่องจากลูกบอลไม่ได้เคลื่อนที่มาก่อน
กล่าวได้ว่าลูกบอลเคลื่อนที่ด้วยความเร่ง หรือเปลี่ยนแปลงการเคลื่อนที่
แรงจึงเป็นตัวการก่อให้เกิดความเร่ง
บ่อยครั้งที่แรงที่กระทำไม่ใช่เป็นแรงเดียวที่กระทำต่อวัตถุ
มีแรงอื่นๆ มากระทำอยู่ด้วย
การรวมแรงทุกอย่างที่กระทำต่อวัตถุนั้นเรียกว่าแรงลัพธ์ (net force) ซึ่งเป็นแรงที่ทำให้วัตถุมีความเร่ง จากรูป 4.3 ถ้าเราผลักวัตถุด้วยแรง
10 นิวตันตามแนวระดับ โดยวัตถุวางอยู่บนผิวที่อิสระต่อความเสียดทาน
เช่นลู่อากาศ และถ้ามีเพื่อนอีกคนช่วยผลักด้วยแรง 5 นิวตันในเวลาเดียวกันในทิศทางเดียวกันบนวัตถุเดียวกัน
แรงลัพธ์รวมที่กระทำต่อวัตถุเกิดจากผลรวมของแรงเป็น 15 นิวตัน
วัตถุจะเคลื่อนที่ด้วยความเร่งราวกับว่าถูกผลักด้วยแรงเดี่ยว 15 นิวตัน
ถ้าเพื่อนของคุณออกแรงผลักในทิศทางตรงกันข้ามกันในแรงลัพธ์จะเป็นผลต่างของแรงคือ 5
นิวตัน ความเร่งของวัตถุจะเป็นเหมือนกับวัตถุถูกผลักด้วยแรง 5
นิวตัน
เราพบว่าขนาดความเร่งขึ้นอยู่กับจำนวนแรงลัพธ์
เพื่อจะเพิ่มความเร่งให้กับวัตถุหนึ่ง เราต้องเพิ่มแรงลัพธ์ให้มากขึ้น ที่เหตุผลทำให้เข้าใจได้
ถ้าเพิ่มแรงเป็นสองเท่าต่อวัตถุแล้ว
เราก็จะได้ความเร่งเป็นสองเท่า
เรากล่าวได้ว่าความเร่งเกิดขึ้นเป็นปฏิภาคตรงกับแรงลัพธ์ เขียนได้ว่า
ความเร่ง α แรงลัพธ์
สัญลักษณ์ α แทนการเป็นปฏิภาคตรงต่อ
4.2 มวลต้านทานต่อความเร่ง
เมื่อผลักรถใส่ของห้างสรรพสินค้า
จะพบว่าผลักรถที่ใส่ของมากหนักมากจะผลักให้เร่งได้น้อยกว่ารถที่ใส่ของน้อยหนักน้อยกว่า
ทั้งนี้เพราะความเร่งขึ้นอยู่กับมวลที่ถูกพลักออกไป
สำหรับวัตถุที่มีมวลมากกว่าเราจะพบว่ามีความเร่งน้อยกว่า
ถ้ามวลมากขึ้นเป็นสองเท่าเมื่อให้แรงผลักเท่าเดิมให้ผลเป็นความเร่งได้เพียงครึ่งหนึ่ง
ให้มวลเป็นสามเท่าให้ผลเป็นความเร่งได้ 1 ใน 3 ของความเร่งเดิม และต่อไป
กล่าวอีกอย่างได้ว่าสำหรับแรงที่กำหนดให้ความเร่งที่เกิดขึ้นเป็นปฏิภาคกลับกับมวล
เขียนได้เป็นดังนี้
ความเร่ง α 1/มวล
คำว่าปฏิภาคกลับ หมายความว่าจากการมี 2 ค่าเปลี่ยนแปลงไปในทิศทางตรงข้ามกัน
เราเห็นว่าตัวหารเพิ่มขึ้นปริมาณทั้งหมดลดลง ตัวอย่างเช่นปริมาณ 1/100 น้อยกว่าปริมาณ 1/10
4.3 กฏข้อที่ 2
ของนิวตัน
นิวตันเป็นคนแรกที่ตระหนักว่าความเร่งที่เราทำให้เกิดขึ้นเมื่อเราเคลื่อนที่บางอย่างขึ้นอยู่กับแรงผลักมากเท่าใดและมวลที่ผลักเท่าใดด้วย
เขาได้ข้อสรุปเป็นกฏที่สำคัญมากที่สุดของธรรมชาติเท่าที่เคยมีมาคือกฏข้อที่สองของเขา
โดยกฏข้อที่สองกล่าวว่า
ความเร่งที่เกิดขึ้นจากที่มีแรงลัพธ์กระทำกับวัตถุหนึ่งเป็นปฏิภาคตรงกับขนาดของแรงลัพธ์ใน
ทิศทางเดียวกับแรงลัพธ์
และเป็นปฏิภาคกลับกับมวลของวัตถุนั้น
หรือเขียนอยู่ในรูป ความเร่ง α แรงลัพธ์/มวล
โดยใช้หน่วยมาตรฐานของแรงเป็นนิวตัน(N); มวลเป็นกิโลกรัม (Kg) และหน่วยของความเร่งเป็น
เมตรต่อวินาทีกำลังสอง (m/s2) จะได้เป็นสมการโดยตรงคือ
ความเร่ง = แรงลัพธ์ / มวล
ในรูปที่ลัดสั้น เมื่อ a แทนความเร่ง , F แทนแรงลัพธ์ และ m แทนมวลของวัตถุจะได้ว่า
a = F/m หรือเขียนอีกรูปแบบได้เป็น
F = m a
ความเร่งเท่ากับแรงลัพธ์หารด้วยมวล
จากความสัมพันธ์เราสามารถเห็นได้ว่า ถ้าแรงลัพธ์ที่กระทำต่อวัตถุเพิ่มเป็นสองเท่า
ความเร่งก็จะเพิ่มเป็นสองเท่าด้วย
สมมุติว่าถ้ามวลเพิ่มเป็นสองเท่าแล้ว ค่าความเร่งจะลดลงเป็นครึ่งหนึ่ง ถ้าทั้งแรงลัพธ์และมวลเพิ่มเป็นสองเท่า
แล้วความเร่งก็จะไม่เปลี่ยนแปลง
การคำนวณแก้ปัญหา
ถ้ามวลของวัตถุหนึ่งวัดเป็นกิโลกรัม(kg) และความเร่งวัดเป็นเมตรต่อวินาทีกำลังสอง(m/s2) แล้วแรงกำหนดในหน่วยนิวตัน
(N) แรง 1 นิวตันคือแรงที่ทำให้มวล 1 กิโลกรัมมีความเร่ง 1
เมตรต่อวินาทีกำลังสอง เราสามารถจัดกฏที่สองของนิวตันอ่านดังนี่
แรง = มวล X ความเร่ง
1N = (1
kg) X (1 m/s2)
จะเห็นว่า 1N = 1kg.m/s2
จุดระหว่าง kg กับ m/s2 หมายถึงคูณหน่วยทั้งสองเข้าด้วยกัน
ถ้าเราทราบรู้ค่าปริมาณ 2 อย่าง (หรือ 2 ตัวแปร) ตามสูตรในกฏข้อที่สองของนิวตันแล้ว แล้วสามารถคำนวณหาค่าตัวแปรที่ 3 ที่ไม่ทราบได้ ตัวอย่างเช่นต้องมีแรงเท่าใดที่จะทำให้เครื่องบินเจ็ตมวล 30,000 kgเคลื่อนที่ด้วยความเร่ง 1.5 m/s2
ถ้าเราทราบรู้ค่าปริมาณ 2 อย่าง (หรือ 2 ตัวแปร) ตามสูตรในกฏข้อที่สองของนิวตันแล้ว แล้วสามารถคำนวณหาค่าตัวแปรที่ 3 ที่ไม่ทราบได้ ตัวอย่างเช่นต้องมีแรงเท่าใดที่จะทำให้เครื่องบินเจ็ตมวล 30,000 kgเคลื่อนที่ด้วยความเร่ง 1.5 m/s2
จาก F = ma
=(30,000 kg) x (1.5 m/s2 )
=45,000 kg. m/s2
= 45,000 N
=(30,000 kg) x (1.5 m/s2 )
=45,000 kg. m/s2
= 45,000 N
สมมุติว่าคุณรู้แรงและมวล
และต้องการจะคำนวณหาความเร่ง ตัวอย่างเช่น
จะเกิดความเร่งเท่าใดเมื่อมีแรงไปกระทำ2000 Nต่อรถยนต์มวล 1000 kg โดยใช้กฏข้อที่สองของนิวตันจะหาความเร่งได้คือ
เมื่อเพิ่มแรงเป็นสองเท่ากับมวลเดิมเดียวกัน
เท่ากับการเพิ่มความเร่งเป็นสองเท่า
คำถาม1. ถ้ารถยนต์คันหนึ่งสามารถเคลื่อนที่ที่ความเร่ง 2 m/s2 จะมีความเร่งเท่าใดถ้ารถยนต์คันนี้ลากรถอีกคันที่มวลเท่ากัน
2. การเคลื่อนที่จะเป็นแบบใด ถ้าแรงที่ให้กับวัตถุคงที่ไม่เปลี่ยนแปลง โดยที่วัตถุก็มีมวลตายตัวคงที่
4.4 ภาวะนิ่ง สแตติกซ์ (สถิตย์ศาสตร์)
มีแรงกี่แรงที่กระทำต่อหนังสือที่วางนิ่งอยู่บนโต๊ะ ห้ามบอกว่าแรงเนื่องจากน้ำหนักแรงเดียว ถ้ามีเพียงแรงเดียวกระทำน่าจะต้องเคลื่อนที่ด้วยความเร่ง ความจริงก็คือเมื่อหนังสือวางนิ่ง และไม่มีความเร่งใดๆเกิดขึ้น เป็นหลักฐานว่ามีอีกแรงหนึ่งที่มากระทำ อีกแรงที่ว่านี้จะต้องมาหักล้างกับแรงน้ำหนักทำให้แรงลัพธ์เป็นศูนย์ อีกแรงหนึ่งนั่นก็คือแรงที่โต๊ะรับไว้ (มักจะเรียกว่าแรงตั้งฉาก: normal force) กล่าวอีกอย่างได้ว่าโต๊ะออกแรงผลักหนังสือขึ้น ลองจินตนาการว่ามีมดอยู่ระหว่างหนังสือกับโต๊ะ หรือหนังสือทับมดบนโต๊ะ มดอาจรู้สึกว่าตัวเองถูกบีบอัดทั้งสองด้านทั้งด้านบนและด้านล่าง โดยโต๊ะออกแรงผลักหนังสือขึ้นด้านบนด้วยแรงขนาดเดียวกับที่หนังสือออกแรงกดลงบนโต๊ะ ถ้าหนังสือหยุดนิ่งผลรวมของแรงที่กระทำต่อหนังสือสมดุลหรือเป็นศูนย์
รูปที่ 4.6 แรงลัพธ์ที่กระทำต่อหนังสือเป็นศูนย์ เพราะว่ามีแรงที่โต๊ะผลักขึ้นด้วยแรงที่เท่ากับแรงน้ำหนัก ของหนังสือทิศลง
การแขวนตัวเองกับเชือกห้อยลงมา น้ำหนักตัวเราจะทำให้เชือกตึงมากขึ้นทำให้เชือกมีแรงตึงในเส้นเชือก แรงตึงจะมีเท่าใด ถ้าตัวเราที่แขวนเชือกดังกล่าวไม่ได้มีความเร่ง ความตึงในเส้นเชือกจะต้องเท่ากับน้ำหนักที่แขวน โดยเชือกจะดึงตัวเราไว้ขณะเดียวกันความโน้มถ่วงของโลกก็ดึงตัวเราไว้ ด้วยแรงที่เท่ากันหักล้างกันพอดี เพราะว่าเป็นแรงที่เท่ากันอยู่ในทิศทางตรงข้ามกัน จึงแขวนตัวอยู่ได้นิ่งไม่เคลื่อนที่
สมมุติห้อยโหนโดยจับบาร์ที่มีเชือกผูกสองเส้นดัง รูป 4.7 แล้วความตึงในแต่ละเส้นเชือกเป็นครึ่งหนึ่งของน้่ำตัวที่โหน(ถ้าไม่คิดน้ำหนักเชือก) แรงตึงในเส้นเชือกที่มีแนวทิศขึ้นเส้นละครึ่งหนึ่งของน้ำหนักตัวไปหักล้างกับน้ำหนักตัวที่จับบาร์โหนอยู่สมดุลพอดี และในการจับบาร์ด้วยมือแต่ละแขน แต่ละแขนก็รับน้ำหนักครึงหนึ่งของน้ำหนักตัว เมื่อพยายามจะยกตัวเองด้วยแขนเดียวทำไมจึงยากขึ้นเป็นสองเท่า

รูปที่ 4.7 ผลรวมของแรงตึงในเส้นเชือกจะต้องเท่ากับแรงน้ำหนักตัวที่ห้อยโหน
เมื่อคุณก้าวขึ้นวัดน้ำหนักบนเครื่องชั่ง แรงกดลงด้านล่างคือแรงความโน้มถ่วง และแรงดันขึ้นด้านบนของพื้นที่ไปกดสะปริง ที่ปรับไว้รองน้ำหนักของคุณ ส่งผลให้เครื่องชั่งแสดงแรงที่รับน้ำหนักของคุณ ถ้าคุณยืนบนเครื่องชั่งสองเครื่องโดยแบ่งหน้กตัวไปที่แต่ละเครื่องชั่งเท่ากัน เครื่องชั่งแต่ละเครื่องอ่านว่าอะไร เป็นอย่างไรถ้าคุณยืนกดน้ำหนักไปที่เท้าข้างหนึ่งมากกว่า
4.5 ความเสียดทาน
แม้ว่าจะมีให้แรงเพียงแรงเดียวกระทำต่อวัตถุ ปกติแล้วก็ไม่ใช่แรงเดียวนี้เท่านั้นที่มีผลต่อการเคลื่อนที่ ทั้งนี้เพราะยังมีความเสียดทานอยู่เสมอ ความเสียดทานคือแรงที่มักกระทำในทิศทางที่ตรงข้ามกับการเคลื่อนที่ มักเกิดกับผิวหน้าของวัตถุที่มาสัมผัสกันเป็นส่วนใหญ่ แม้แต่ผิวที่ราบเรียบก็ยังมีรอยหยาบละเอียดเมื่อมองดูด้วยกล้องจุลทรรศน์ เมื่อวัตถุหนึ่งเคลื่อนที่เลื่อนถูไปกับวัตถุอื่น การเคลื่อนไปบนส่วนที่ไม่เรียบไม่ก็ขูดเอาผิวหน้านั้นออกไป ไม่ว่าทางใดก็ต้องใช้แรงในการเคลื่อนผ่านไป
ความเสียดทานไม่ได้จำกัดอยู่ที่ของแข็งเคลื่อนผ่านสัมผัสกันเท่านั้น ความเสียดทานยังเกิดขึ้นในของเหลวและแกส ซึ่งเรียกว่าของไหล(Fluid) ความเสียดทานของของไหลเกิดขึ้นเมื่อวัตถุเคลื่อนผ่านของไหลด้านใดด้านหนึ่งหรือทั้งหมด บางคนอาจเคยมีประสบการณ์วิ่งในน้ำตื้นลึกแตกต่างกัน ก็จะรู้ได้ถึงความยากลำบากต่อการเคลื่อนที่ในของเหลว แม้ว่าการเคลื่อนที่อัตราเร็วต่ำก็ตาม ความตานทานอากาศเป็นความเสียดทานที่กระทำต่อสิ่งที่เคลื่อนที่ผ่านอากาศเป็นกรณีที่เห็นได้ทั่วไปในกรณีของความต้านทานของของของไหล
เมื่อมีความเสียดทาน วัตถุอาจเคลื่อนที่ด้วยความเร็วคงที่ขณะที่ให้แรงกระทำต่อวัตถุนั้น ในกรณีนีแรงเสียดทานจะสมดุลกับแรงที่ให้กับวัตถุนั้น แรงลัพธ์จึงเป็นศูนย์ ดังนั้นจึงไม่มีความเร่ง ตัวอย่างเช่นในภาพที่ 4.9 ผู้ผลักบล็อกวัตถุจะเคลื่อนไปได้ด้วยความเร็วคงที่ก็ต่อเมื่อออกแรงผลักมากพอที่ให้แรงสมดุบกับแรงเสียดทาน ถุงใส่ของที่ตกลงมาด้วยความเร็วคงที่ก็ต่อเมื่อความต้านทานอากาศสมดุลกับน้ำหนักของถุงใส่ของนั้น
รูปที่ 4.9 ออกแรงผลักลังไม้ไปทางขวา และแรงเสียดทานกระทำไปทางซ้าย ถุงใส่ของตกลงมาด้วยแรงโน้มถ่วง แรงต้านทานอากาศกระทำกับถุงทิศขึ้นด้านบน ทิศทางของแรงเสียดทานมีทิศทางตรงกันข้ามกับทิศทางการเคลื่อนที่เสมอ
คำถาม
1. ตามรูปที่ 4.6 แสดงให้เห็นเพียงสองแรงกระทำต่อหนังสือ คือน้ำหนักของหนังสือและแรงที่โต๊ะรับหนังสือ แรงเสียดทานไม่ได้กระทำอยู่ด้วยใช่หรือไม่
2.สมมุติวาเครื่องบินจัมโบเจ็ตเคลื่อนที่ไปด้วยความเร็วคงที่เมื่อแรงผลักดันเคลื่องยนต์คงที่ 80000 นิวตัน ให้หาความเร่งของเครื่องบินเจ็ต และมีแรงเสียดทานกระทำต่อเครื่องบินเจ็ตเท่าใด
4.6 การประยุกต์ใช้แรง ... ความดัน
เราสามารถที่จะนำหนังสือไปวางบนโต๊ะไม่ว่าจะวางในแนวราบหรือแผ่นปก หรือในแนวตั้งด้วยสันที่มุมหนึ่งของโต๊ะ แรงที่หนังสือทำกับโต๊ะและโต๊ะทำกับหนังสือก็ยังคงเท่าเดิม ตรวจสอบโดยใช้ตาชั่ง ชั่งสิ่งต่างๆ อันเดียวกันแต่ว่างที่ตำแหน่งต่างๆกัน หรือแม้แต่ตัวของเรา เมื่อถือหนังสือไว้บนฝ่ามือ จะว่างแบบไหนก็ตามให้สมดุลอยู่ได้ แม้ว่าแรงหนังสือทำต่อมือเนื่องจากแรงโน้มถ่วงและที่มีอกระทำต่อหนังสือ แม้ว่าจะเท่ากันเหมือนเดิม เราจะสังเกตุได้ถึงความแตกต่างที่หนังสือกดทับที่มือเมื่อพื้นที่หนังสือสัมผันมือแตกต่างกัน ทั้งนี้เพราะหว่าพื้นที่แตะสัมผัสกับมือแตกต่างกันในแต่ละกรณี สำหรับแรงที่กระทำต่อหน่วยพื้นที่เรียกว่า ความดัน(pressure)
ความดัน = แรง/พื้นที่แตะสัมผัสที่ใช้
โดยที่แรงตั้งฉากกับพื้นที่ผิวในรูปของสมการคือ
P = F/A
เมื่อ P คือความดัน A เป็นพื้นที่ซึ่งแรงกระทำ แรงวัดในหน่วยเป็นนิวตัน ซึ่งต่างจากการวัดความดันที่วัดในหน่วยเป็นนิวตันต่อตารางเมตร(เรียกอีกอย่างว่าปาสคาล:Pa เป็นหน่วยค่อนข้างใหม่รับเอามาเป็นหน่วยมาตรฐานในปี 1960
มีหลายคนเข้าใจผิดว่าหน้ายางรถยนต์ยิ่งกว้างทำให้ในการเคลื่อนยานยนต์มีความต้านทานมากขึ้น แต่การทำให้หน้ากว้างหรือพื้นที่มากขึ้นทำให้มีความดันน้อยลง ส่วนยางหน้าแคบหรือพื้นที่น้อยกว่ามีความดันน้อยกว่า จะช่วยลดความร้อนและการสึกหรอ
เรารับความดันกับพื้นที่ยืน เมื่อยืนด้วยเท้าเดียวมากกว่ายืนด้วยสองเท้าทั้งนี้เพราะเท้าเดียวมีพื้นที่สัมผัสน้อยกว่า การยืนด้วยหัวแม่เท้าดังเช่นนักเต้มบัลเลย์จะเกิดความดันสูงมาก ยิ่งมีพื้นที่น้อยเท่าไรที่รับแรงก็ยิ่งมีความดันบนพื้นที่นั้นมากเท่านั้น
กิจกรรม
1.ให้หาวิธีการวัดความดันขณะที่เรายืนบนผ่าเท่าเพียงเท้าเดียว
การแสดงสาธิตเรื่องความดันดังภาพที่ 4.12 ผู้แสดงคนหนึ่งให้แรงผ่านฆ้อนตีบล็อกซีเมนที่วางบนแผงตาปูที่ด้านแหลมกดผู้แสดงอีกคนดังในภาพ
รูปที่ 4.12 ผู้แสดงออกแรงผ่านฆ้อนตีบล็อกซีเมนด้านบนแตกที่ผู้แสดงอีกคนนอนอยู่ระหว่างแผงตาปูปลายแหลม แรงดันต่อตาปูไม่พอที่จะเจาะเข้าผิวหนัง
คำถาม
1. ความพยายามที่จะแสดงสาธิตดังในรูป 4.12 จะเป็นการดีหรือไม่ถ้าเริ่มจากตะปูน้อยๆ และทำต่อไปด้วยตะปูมากขึ้น
2.บล็อกซีเมนต์ที่มวลมากมีบทบาทสำคัญในการสาธิต จะทำให้ปลอดภัยมากขึ้น ถ้าให้บล็อกซีเมนต์มวลมากขึ้น หรือมวลน้อยลง
4.7 อธิบายการตกอย่างอิสระ
กาลิเลโอแสดงให้เห็นว่าวัตถุที่กำลังตกจะมีความเร่งเท่ากันไม่ว่ามวลของวัตถุจะเป็นเท่าใด ที่กล่าวมาเป็นจริงก็ต่อเมื่อไม่คิดความต้านทานอากาศ หรือมีน้อยมากตัดทิ้งได้ นั่นคือเมื่อวัตถุตกลงอย่างอิสระ จึงประมาณได้ว่าความเร่งเท่าเป็นจริงเมื่อความต้านทานอากาศน้อยมากเมื่อเทียบกับวัตถุที่กำลังตก ตัวอย่างเช่น กระสุนปืนใหญ่ 10 กิโลกรัม และก้อนหิน 1 กิโลกรัมปล่อยให้ตกลงมาที่ระดับตำแหน่งหนึ่งที่เวลาเดียวกัน จะตกถึงพื้นพร้อมกันโดยประมาณ การทดลองนี้กล่าวกันว่าทำการทดลองโดยกาลิเลโอ จากหอเอียงเมืองปิซา ล้มล้างแนวคิดของอริสโตเติลที่คิดให้วัตถุที่หนักกว่า 10 เท่า ควรจะตกได้เร็วกว่าวัตถุที่เบากว่า 10 เท่า เพราะพิจารณาเฉพาะน้ำหนักที่มากกว่าเท่านั้น
การทดลองของกาลิเลโอและคนอื่นๆ ก็ให้ผลยืนยันเหมือนกัน แต่กาลิเลโอไม่ได้บอกว่าทำไม่ความเร่งจึงเท่ากัน แต่กฏข้อที่สองของนิวตันบอกให้เราพิจารณามวลของวัตถุด้วย ซึ่งคิดได้ว่า เพิ่มแรงที่ทำเป็น 10 เท่าที่กระทำต่อวัตถุมวลมากขึ้น 10 เท่า ก่อให้เกิดความเร่งเดียวกัน กันกับ แรงหนึ่งในสิบเท่ากระทำกับมวลหนึ่งในสิบ
F/M = f/m
F แทนแรงที่กระทำต่อลูกกระสุนปืนใหญ่ M แทนมวลกระสุนปืนใหญ่ f, m แทนน้ำหนักและมวลของก้อนหิน จะเห็นว่าสัดส่วนน้ำหนักต่อมวล เท่ากันสำหรับกรณีนี้ และสำหรับวัตถุใดๆ การตกอย่างอิสระของวัตถุภายใต้ความเร่งเดียวกันในสถานที่หรือตำแหน่งเดียวกัน ความเร่งอันเนื่องจากความโน้มถ่วงแทนด้วย สัญลักษณ์ g
เราสามารถแสดงผลอย่างเดียวกันโดยค่าของจำนวน น้ำหนักก้อนหิน 1 kb คือ 9.8 N ที่ผิวโลก น้ำหนัก 10 kg ของสาร เช่นลูกกระสุนปืนใหญ่คือ 98 N แรงที่กระทำต่อวัตถุที่กำลังตกคือแรงเนื่องจากความโน้มถ่วง หรือน้ำหนักของวัตถุนั้น ความเร่งของก้อนหินคือ
a = f/m = น้ำหนัก/มวล = 9.8N/1kg = 9.8 kg.m/s^2/1kg = 9.8 m/s^2 = g
สำหรับของลูกกระสุนปืนใหญ่
a = F/M = น้ำหนัก/มวล = 98N/10kg = 98 kg.m/s^2/10kg = 9.8 m/s^2 = g
รูปที่ 4.14 สัดส่วนน้ำหนัก (F) ต่อมวล m เหมือนกันสำหรับกระสุนปืนใหญ่ 10 kg และก้อนหิน 1 kg
คำถาม
1. ถ้าคุณอยู่บนดวงจันทร์และปล่อยฆ้อนและขนนกจากระดับเดียวกันที่เวลาเดียวกันแล้วจะตกถึงพื้นผิวดวงจันด้วยกันหรือพร้อมกันหรือไม่
4.8 การตกของวัตถุและแรงต้านทาน
ขนนกและเหรียญที่ตกลงมาด้วยความเร่งเท่ากันในหลอดศูนยากาศ แต่ไม่เท่ากันเมื่อมีอากาศอยู่ เมื่อปล่อยให้อากาศเข้าไปในหลอดศูนยากาศ และจัดให้ตกลงมาในหลอดอีกครั้งเหรียญจะตกลงมาอย่างรวดเร็วส่วนขนนกค่อยๆตกลงมา ความต้านทานอากาศทำให้แรงลัพธ์น้อยลง วัตถุเล็กหรือเหรียญ และใหญ่กว่าสำหรับขนนก การเคลื่อนที่ลงสำหรับขนนกนั้นความต้านทานอากาศต้านการเคลื่อนที่ หากแรงต้านทานอากาศที่กระทำต่อขนนกเท่ากับน้ำหนักขนนก แรงลัพธ์ที่กระทำต่อขนนกเป็นศูนย์และไม่เกิดความเร่งอีกต่อไป ขนนกจะเคลื่อนที่มาถึงอัตราเร็วปลาย หรือความเร็วปลายหากคิดทิศทางการตก
แรงต้านทานอากาศที่มีต่อเหรียญมีผลไม่มากที่อัตราเร็วไม่มากแรงต้านทานอากาศมีน้อยเทียบกับน้ำหนักของเหรียญ ความเร่งของเหรียญก็ลดลงเพียงเล็กน้อยเมื่อเทียบกับการตกอย่างอิสระ เช่นกันถ้าให้เคลื่อนที่ลงมาเรื่อยๆ ความเร็วก็จะเพิ่มช้าลงและก็เข้าสู่อัตราเร็วปลายเช่นกัน ที่เมื่อความต้านทานอากาศเพิ่มขึ้นเท่ากับน้ำหนักของเหรียญ
ตัวอย่างอัตราเร็วปลายจากการกระโดดร่มว่ายอากาศก่อนกางร่ม นักกระโดดร่มอาจับมือกันหลายคนเพื่อให้เกิดแรงต้านอากาศเมื่อถึงอัตราเร็วปลายที่แรงต้านอากาศเท่ากับน้ำหนักของคน คนทั้งกลุ่มก็จะตกลงมาด้วยอัตราเร็วปลายนั้นก่อนที่จะกางร่ม อัตราเร็วปลายการว่ายอากาศในการกระโดดร่มของคนประมาณ 150 -200km/h ขึ้นอยู่กับน้ำหนักและจุดที่ตก คนที่หนักกว่าจะมีความเร็วปลายมากกว่าคนที่เบากว่า คนที่หนักกว่าถ้ากางแขน ขาออกก็จะได้ความเร็วปลายที่ใกล้เคียงกับคนที่เบากว่า และเมื่อร่มกางแล้วอัตราเร็วปลายก็ถูกทำให้ลดลงเหลือ 15 - 25 km/h ที่ยอมรับได้
คำถาม
ถ้าคนที่หนัก และคนที่เบา กระโดดร่มด้วยกันจากระดับสูงเดียวกันแต่ละคนสวมชุดกระโดดร่มเดียวกัน ใครจะตกพื้นดินก่อนกัน
ถ้าเราถือลูกเทนนิสและลูกเบสบอลแล้วปล่อยลงพร้อมกัน จะเห็นว่าตกถึงพื้นในเวลาเดียวกัน แต่เมื่อปล่อยจากตึกสูงจะเห็นว่าลูกเบสบอลที่หนักกว่าถึงพื้นก่อน ทั้งนี้เพราะเกิดแรงเสียดทานมากขึ้นกับวัตถุที่หนักที่อัตราเร้วมาก สำหรับที่อัตราเร็วต่ำความต้านทานอากาศอาจน้อยไม่นำมาคิด สำหรับที่อัตราเร็วสูงจะเห็นได้ถึงความแตกต่าง
คำถาม
ถ้าแรงต้านอากาศเท่ากันสำหรับการตกของลูกเทนนิสและลูกเบสบอล แล้วการตกของอะไรมีความเร่งมากกว่า
สมัครสมาชิก:
บทความ (Atom)
-
วัตถุทั้งมีการเริ่มต้นเคลื่อนที่ เคลื่อนที่ช้าลง เคลื่อนที่เป็นทางโค้ง บทที่แล้วกล่าวถึงวัตถุที่จุดนิ่งหรือเคลื่อนที่ด้วยความเร็วคงที่ โดยไ...
-
การสั่นเกิดขึ้นเมื่อมีสิ่งรบกวนเกิดขึ้นที่อาจก่อให้เกิดคลืนได้ ส่วนคลื่นจากแหล่งกำเนิดการสั่นใช้ตัวกลางในการเคลื่อนที่ไป นอกจากเป็นคลื่นแม่...
-
การเคลื่อนที่มีอยู่รอบตัวเรา กลางคืนจะเห็นการเคลื่อนที่ของดวงดาว การเคลื่อนที่ของอะตอมแม้จะมองไม่เห็น ทำให้เกิดความร้อน หรือเสียง การเคลื่อ...